*s*tryker

Tornier Perform[®] Anatomic Glenoid

Tornier Perform Anatomic Glenoid | Operative technique

This publication sets forth detailed recommended procedures for using Stryker devices and instruments. It offers guidance that you should heed, but, as with any such technical guide, each surgeon must consider the particular needs of each patient and make appropriate adjustments when and as required.

Important

- The patient should be advised that the device cannot and does not replicate a normal healthy bone, that the device can break or become damaged as a result of strenuous activity or trauma and that the device has a finite expected service life.
- Removal or revision of the device may be required sometime in the future.
- Cleaning and sterilization information is provided in the applicable instructions for use.
- Non-sterile devices, including implants and instruments, must be cleaned and sterilized prior to use, in accordance with validated methods.
- Devices that are able to
 be disassembled should be
 disassembled prior to point-of-use
 processing. Additionally, devices
 with movable components that do
 not facilitate disassembly should
 be manually articulated during
 the point-of-use processing step in
 order to evacuate additional soils.

- Please remember that the compatibility of different product systems has not been tested unless specified otherwise in the product labeling.
- Consult Instructions for Use (https://ifu.stryker.com) for a complete list of potential adverse effects and adverse events, contraindications, warnings and precautions.
- The surgeon must advise patients of surgical risks, and make them aware of adverse effects and alternative treatments.
- An implant whose packaging is open or damaged or whose expiration date has passed must not be used.
 Every precaution must be taken to ensure sterility when opening the packaging of the implant and during implantation.

Tornier Perform

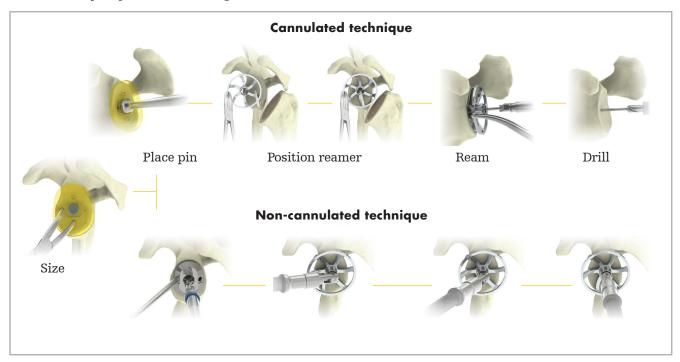
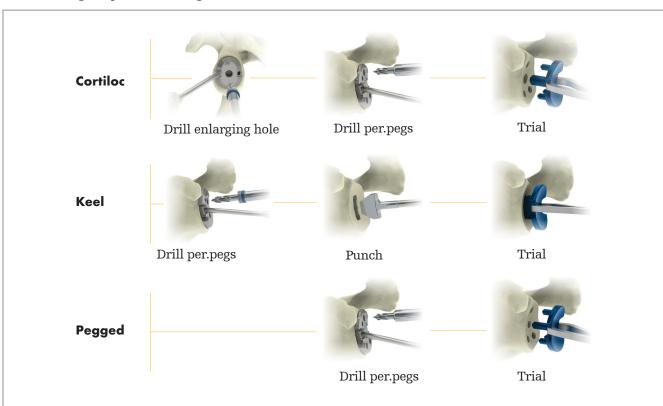

Anatomic Glenoid

Table of contents


Surgical flow	4
Implant indications/contraindications	5
Surgical flow 4 Implant indications/contraindications 5 System compatibility 6-7 Common techniques for the keel, peg and Cortiloc glenoids 8 • Exposure 8 Articular curvature overview 9 Determining articular curvature 10 Cannulated approach 11-14 • Confirming the glenoid size 11 • Resurfacing the glenoid 12-14 • Drilling the central hole 14 Standard approach 15-18 • Select the glenoid size 15 • Drilling the central hole 16 • Resurfacing the glenoid 17-18 Implantation of the keeled glenoid 19-22 • Preparing the keel slot 19-20 • Positioning the keeled glenoid component 21-22	
	•
Articular curvature overview	9
Determining articular curvature	10
Confirming the glenoid size Resurfacing the glenoid	11 12-14
Standard approach	15-18
Drilling the central hole	16
_	
1 0	
Implantation of the pegged glenoid	23-24
Preparing the peg holes Positioning the pegged glenoid component	
Implantation of the Cortiloc pegged glenoid	25-26
Preparing the peg holes Positioning of the Cortiloc Glenoid Component	
Components	27-33
Common tray — upper level Common tray — lower level Keeled tray Pegged tray Cortiloc pegged tray	28 29 30
Glenoids Miscellaneous	

Surgical flow

Common preparation surgical flow

Anchorage specific surgical flow

Implant indications and contraindications

Tornier Perform Anatomic Glenoid overview

The Tornier Perform Anatomic Glenoid is a comprehensive offering that includes a variety of anchorage options such as a keeled, standard pegged and Cortiloc pegged. These designs are based on extensive anatomic studies* and are offered in 4 sizes. Additionally, both common and anchorage specific instrumentation are included in the Tornier Perform Anatomic Glenoid.

Stryker shoulder prostheses are intended for replacement of the shoulder joint to reduce pain and improve shoulder mobility in comparison with preoperative status.

Indications

Prosthetic replacement with this device (Tornier Perform Anatomic Glenoid component + humeral component) may be indicated to relieve severe pain or significant disability caused by:

- Degenerative pathologies: osteoarthritis, rheumatoid polyarthritis, post-traumatic arthritis
- Primary and secondary necrosis of the humeral head
- Displaced 4-part upper humeral fracture
- Humeral head fracture
- · Other pathologies where arthrodesis or resectional arthroplasty of the humeral head are not acceptable
- Revisions when other treatments or devices have failed

The Tornier Perform Anatomic Glenoids are for use with cemented applications and are labeled as such.

Contraindications

- Systemic infection
- Fever and/or local inflammation
- Rapid joint destruction or bone resorption apparent on roentgenograms
- Elevation of sedimentation rate unexplained by other disease, elevation of WBC count
- Distant foci of infection from genitourinary, pulmonary, skin and other sites, dental focus infection that may cause haematogenous spread to the implant site
- Use of this implant is contraindicated in the presence of significant injury to the upper brachial plexus
- Poor quality and/or insufficient quantity of glenoid bone stock (pre- or intraoperative glenoid fracture...)
- Nonfunctional deltoid or external rotator muscles
- Important and non-reparable rupture of the rotator cuff
- Neuromuscular disease (e.g. joint neuropathy)
- Known allergy to one of the materials
- Patient pregnancy

^{*}Tornier internal data on file

System compatibility

The Tornier Perform Anatomic Glenoid has been designed to be compatible with the Tornier Simpliciti, Aequalis, Affiniti and Tornier Flex Humeral Head Systems in certain combinations. For more information on the cleared combinations refer to the mismatch charts listed below.

(All models are not cleared in all countries; please contact your Stryker representative for information about the availability.)

Tornier Perform Anatomic Glenoids (keel, cemented and Cortiloc) with Tornier Flex STB Humeral Heads – mismatch chart

Recommended combinations heads/glenoids

Diametrical mismatch in mm, the cleared range for this combination is 1mm to 24.8mm.

Size	Heads	39x13	39x15	42x14	42x16	42x18	45x15	45x17	45x19	48x16	48x18	48x20	51x17
Glenoid	Diameter of curvature	42.3	40.4	45.5	43.6	42.5	48.8	46.8	45.6	52	50	48.8	55.3
Small	55.4	13.1	15	9.9	11.8	12.9	6.6	8.6	9.8	3.4	5.4	6.6	0.1
Medium	59.6	17.3	19.2	14.1	16	17.1	10.8	12.8	14	7.6	9.6	10.8	4.3
Large	63.6	21.3	23.2	18.1	20	21.1	14.8	16.8	18	11.6	13.6	14.8	8.3
XL	67.8	25.5	27.4	22.3	24.2	25.3	19	21	22.2	15.8	17.8	19	12.5

Size	Heads	51x20	51x23	54x18	54x21	54x24	56x24
Glenoid	Diameter of curvature	52.5	51.3	58.5	55.7	54.4	56
Small	55.4	2.9	4.1	-3.1	-0.3	1	-0.6
Medium	59.6	7.1	8.3	1.1	3.9	5.2	3.6
Large	63.6	11.1	12.3	5.1	7.9	9.2	7.6
XL	67.8	15.3	16.5	9.3	12.1	13.4	11.8

Tornier Perform Anatomic Glenoids (keel, cemented and Cortiloc) with Aequalis/Tornier Simpliciti Heads – mismatch chart

Recommended combinations heads/glenoids

Diametrical mismatch in mm, the cleared range for this combination is 1mm to 24.8mm.

Size	Heads	37x13.5	39x14	4lxl5	43x16	46x17	48x18	50x16	50x19	52x19	52x23	54x23	54x27
Glenoid	Diameter of curvature	39	41.2	43	45	48	50	55	52	54.6	52.4	54.7	54
Small	55.4	16.4	14.2	12.4	10.4	7.4	5.4	0.4	3.4	0.8	3	0.7	1.4
Medium	59.6	20.6	18.4	16.6	14.6	11.6	9.6	4.6	7.6	5	7.2	4.9	5.6
Large	63.6	24.6	22.4	20.6	18.6	15.6	13.6	8.6	11.6	9	11.2	8.9	9.6
XL	67.8	28.8	26.6	24.8	22.8	19.8	17.8	12.8	15.8	13.2	15.4	13.1	13.8

Cleared mismatch range Non-cleared mismatch range

System compatibility

Tornier Perform Anatomic Glenoids (keel, cemented and Cortiloc) with Affiniti Heads – mismatch chart

Recommended combinations heads/glenoids

Diametrical mismatch in mm, the cleared range for this combination is 1 mm to 24.8 mm.

Size	Heads	40	44	48	52	56
Glenoid	Diameter of curvature	40	44	48	52	56
Small	55.4	15.4	11.4	7.4	3.4	-0.6
Medium	59.6	19.6	15.6	11.6	7.6	3.6
Large	63.6	23.6	19.6	15.6	11.6	7.6
XL	67.8	27.8	23.8	19.8	15.8	11.8

Tornier Perform Anatomic Glenoids (keel, cemented and Cortiloc) with Tornier Flex Heads – mismatch chart

Recommended combinations heads/glenoids

Diametrical mismatch in mm, *the cleared range for this combination is 1mm to 24.8mm.

Size	Heads	38	40	42	44	46	48	50	52	54
Glenoid	Diameter of curvature	39.2	41.4	43.4	45.4	47.6	49.6	51.6	53.8	55.8
Small	55.4	16.2	14	12	10	7.8	5.8	3.8	1.6	-0.4
Medium	59.6	20.4	18.2	16.2	14.2	12	10	8	5.8	3.8
Large	63.6	24.4	22.2	20.2	18.2	16	14	12	9.8	7.8
XL	67.8	28.6	26.4	24.4	22.4	20.2	18.2	16.2	14	12

Cleared mismatch range Non-cleared mismatch range

Preoperative planning

A careful analysis of X-rays and axial CT scan views is recommended before surgery to evaluate the following parameters: osteophytes, articular curvature, anterior and, more importantly, posterior wear of the glenoid, as well as the location, orientation and depth of the glenoid vault.

Common operative techniques for the keeled, pegged and Cortiloc glenoids

Exposure

With the arm abducted and internally rotated, a posterior glenoid retractor is placed on the posterior glenoid border as the proximal humerus is dislocated posteriorly and inferiorly. An angled retractor placed above the glenoid and an angled Kolbel retractor placed in the subscapular fossa are used to complete the exposure. | Figure 1

If preoperatively the humerus rests in a fixed posteriorly subluxed position, then the posterior capsule may be stretched out sufficiently so that a posterior capsular release for exposure may not be necessary.

If, after releasing the entire anterior capsule down to 6 o'clock on the glenoid face the shoulder is still tight, then additional capsule is released around the posterior inferior corner and up the posterior side until the humerus can be adequately retracted for exposure (labrum and posterior capsule). | Figure 1

The glenoid retractor then is moved upward if more of the posterior release needs to be completed. | Figure 2

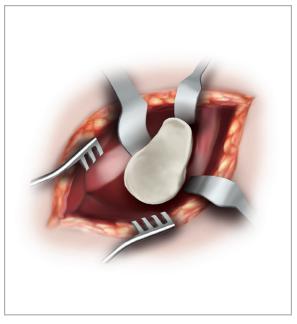


Figure 1

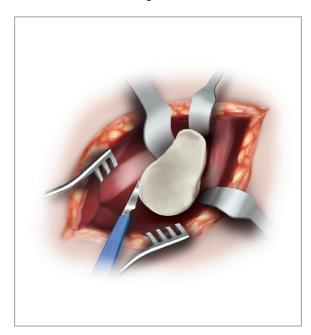


Figure 2

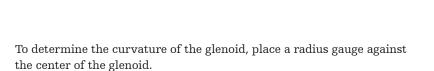
Articular curvature overview

Recent studies have demonstrated that the articular curvature of arthritic glenoids is much different than that of normal glenoids. In particular, one recent study reported the average arthritic glenoid articular curvature as 40mm with a range of 11 standard deviations, while the average normal glenoid articular curvature is 32mm with a range of 3 standard deviations. (Internal data on file)

The Tornier Perform Anatomic Glenoid is the first system to incorporate these new finding by offering multiple backside curvatures of each size glenoid to preserve as much cortical bone as possible. The chart below demonstrates the multiple backside curvatures for each of the four glenoid sizes.

Backside radius	Small	Medium	Large	Extra large
30	S 30	M 30		
35	S 35	M 35		
40	S 40	M 40	L 40	XL 40
50			L 50	XL 50
60			L 60	XL 60

Color coding


To improve operative efficiency, the Tornier Perform Anatomic Glenoid instrumentation has been color coded by size. Please refer to the chart above to see which colors are associated with which sizes.

Determining articular curvature

Five radius gauges are provided to assist in determining the general size and curvatures of the glenoid. Each radius gauge is marked with the size (S-M/L-XL) and the radius (R30, R35, R40, R50, R60). | Figure 3

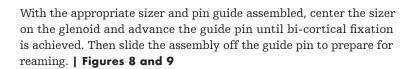
The large end of the sizer is used to measure the best fit of the glenoid superiorly/inferiorly, while the smaller opposite end of the sizer is used to measure the best fit of the glenoid anteriorly/posteriorly.

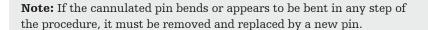
Select the gauge that most precisely fits the native glenoid. This radius will be a determining factor in which instruments are used in subsequent steps. Evaluate the fit of the radius gauge to the face of the glenoid in multiple planes keeping the gauge centered in the glenoid at all times.

| Figures 4 and 5

Figure 3

Figure 4


Figure 5


Confirming the glenoid size

The glenoid size and curvature can be confirmed with the sizer. This is done by applying pressure to the sizer and evaluating the contact area between the bone and sizer. The sizer that has the best match will determine the size and the curvature. | Figure 6

When using the cannulated approach, three pin guides are available that can be attached to the sizer via the rectangular shaped groove. This allows for easy manipulation of the sizer on the face of the glenoid. | Figure 7

Additionally, the guides are cannulated in 0° , 5° and 10° to allow for version correction based upon preoperative planning. It is important to note that the pin guides can place in either the anterior or posterior direction due to the rectangular shape. This allows for the sizer to be placed on the native surface or within the worn defect of the glenoid when placing the guide pin.

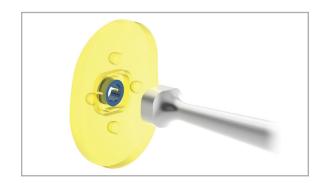


Figure 6

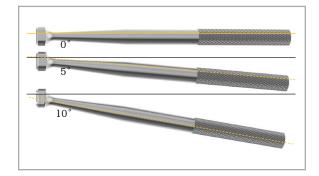


Figure 7

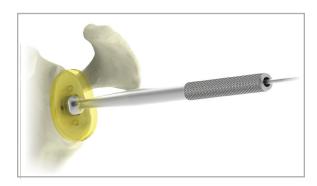


Figure 8

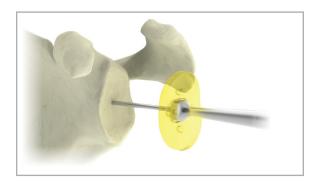


Figure 9

Resurfacing the glenoid

If the exposure is sufficient to place the reamer down the pin without interference, select the reamer that corresponds with the size and curvature determined in previous steps and attach it to the cannulated reamer driver.

If exposure is difficult, a special slot in the internal ring of the reamer will allow the reamer to easily be slided down the pin and past the humerus before the handle is attached to the reamer. | Figure 10

To begin, identify which section of the reamer includes the slot and then place this section over the guide pin. This will allow the reamer to be easily maneuvered past the humerus and retractors. Once the reamer has been introduced into the joint space, slide the central portion of the reamer onto the pin. | Figure 11

Next, place the cannulated reamer driver over the pin. Align the flats on the tip of the driver with those on the reamer and apply pressure to attach the driver to the reamer. | Figure 12

Note: It is recommended to irrigate with saline solution while reaming and drilling to prevent heat buildup which can lead to necrosis of the surrounding bone.

Figure 10

Figure 11

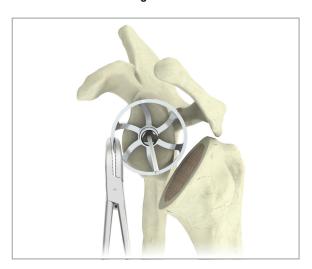


Figure 12

Resurfacing the glenoid (continued)

Always begin by hand reaming and advance to power reaming only if necessary. If power is used, engage the reamer prior to contacting the glenoid surface and apply light pressure. This will help to reduce the risk of fracture. | Figure 13

The goal of reaming is to obtain a bony surface that matches the backside of the glenoid component while removing as little bone as possible. The fit between the glenoid component and the bony surface can be evaluated utilizing the sizer from previous steps.

It is not advisable to ream down to cancellous bone.

Note: Overaggressive reaming should be avoided to prevent possible glenoid fracture and the future risk of component shift or subsidence.

Figure 13

Once reaming is complete, remove the assembly by sliding it off the pin. $\mbox{\bf | Figure 14}$

Figure 14

Resurfacing the glenoid (continued)

It is also possible to detach the reamer from the driver using the quick release handle. To do so, place the tip of the quick release handle onto the shaft of the driver and slide it down until it sits on the reamer. Apply downward pressure with the handle while pulling up on the driver to detach the reamer. | Figure 15

Remove the individual parts in the reverse order that they were assembled.

Note: If the cannulated pin bends or appears to be bent in any step of the procedure, it must be removed and replaced by a new pin.

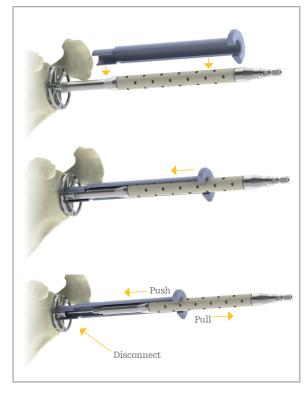


Figure 15

Drilling the central hole

Two drill bit lengths are available, one for the S/M and one for the L/XL size glenoid. To drill the central hole, select the appropriate length (S/M or L/XL) 6mm cannulated central drill bit and attach it to the drill/reamer driver. Place the assembly over the pin and drill until the collar of the bit is flush with the glenoid. $\c|$ Figure 16

Figure 16

Remove the assembly over the guide pin and then remove the guide pin before proceeding to the next step. | Figure 17

Figure 17

Select the glenoid size

To select the glenoid size, select the sizer that best matches the peripheral rim of the glenoid.

Attach the sizer to the clamp via the small holes in the sizer. | Figure 18 Place the sizer onto the glenoid and select the sizer that best matches the peripheral rim of the glenoid. The central location can then be marked through the sizer.

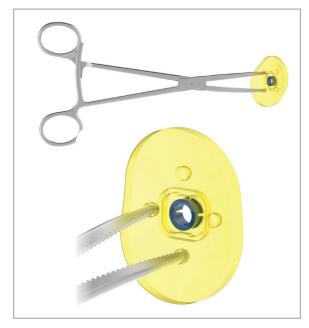


Figure 18

The transparent sizers can also be utilized to confirm the curvature of the glenoid. This is done by applying pressure to the sizer and evaluating the contact area between the bone and sizer. | Figure 19 The sizer that has the best match will confirm the curvature.

Figure 19

Drilling the central hole

When using the standard approach, begin by attaching the drill guide handle to the central hole drill guide. Then select the appropriate length (S/M or L/XL) 6mm central hole drill bit and attach it to the drill/reamer driver via the quick connect mechanism.

Once the instruments are assembled, align the guide with central mark that was made when using the sizer | Figure 20 and drill the central hole until the drill bit collar bottoms out on the drill guide. (The drill bit is provided with a laser etch line which represents the depth to be drilled for those who prefer not to use the drill guide.) | Figure 21

Figure 20

Figure 21

Resurfacing the glenoid

If resurfacing of the glenoid is necessary, select the reamer that corresponds with the size and curvature determined in previous steps. Attach the reamer to either the drill/reamer driver or the articulated driver.

Using the articulated driver

- 1. Attach the reamer in the pivoted unlocked position. | Figure 22
- 2. Once attached, insert the tip of the reamer into the central hole of the glenoid. | Figure 23
- Once the reamer tip is seated, use the handle as a lever and retract the reamer shaft into the straight position. Slide the outer sleeve into the locked position. | Figures 24 and 25

Figure 23

Figure 22

Note: It is recommended to irrigate with saline solution while reaming and drilling to prevent heat buildup which can lead to necrosis of the surrounding bone.

Figure 24

Figure 25

Always begin by hand reaming and advance to power reaming only if necessary. If power is used, engage the reamer prior to contacting the glenoid surface and apply light pressure. This will help to reduce the risk of fracture.

The goal of reaming is to obtain a bony surface that matches the backside of the glenoid component while removing as little bone as possible. The fit between the glenoid component and the bony surface can be evaluated utilizing the sizer from previous steps.

It is not advisable to ream down to cancellous bone.

Note: Overaggressive reaming should be avoided to prevent possible glenoid fracture and the future risk of component shift on subsidence.

Caution: The articulated driver can only be used in the straight locked position.

Note: It may be helpful to remove any posterior retractors prior to inserting the articulated driver. The handle will then in essence become the retractor.

Preparing the keel slot

To prepare the keel slot, begin by selecting the appropriate size (S/M or L/XL) keeled peripheral drill guide.

Attach the drill guide to the drill guide handle and insert the post on the backside of the guide into the central hole. | Figure 26

Align the superior and inferior holes with the supero-inferior axis of the native glenoid. \mid Figure 26

With the drill guide in place, select a drill bit, either the 5mm drill bit for the S/M size or the 6mm drill bit for the L/XL and attach the bit to the drill/reamer driver. Drill the superior hole until the collar of the drill bit contacts the guide. | Figure 27

Figure 26

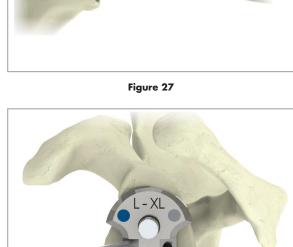


Figure 28

Using the stabilization peg clamp, place the appropriate size stabilization peg into the superior hole and then drill the inferior hole. | Figure 28

The stabilization peg can then be removed along with the guide. | Figures 28 and 29

The bony bridges between the three holes are broken with a rongeur or small osteotome.

Figure 29

Then select the appropriate sized keel punch (S-M or L-XL) which is used to compact the cancellous bone. | Figures 30 and 31 The shape of the keel is then prepared by compacting the cancellous bone using the selected keel punch. Compaction of the cancellous bone is a preferred technique to improve glenoid component fixation.

Figure 30

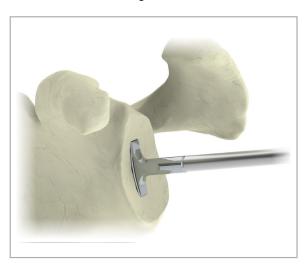


Figure 31

Positioning the keeled glenoid component

Once the keel slot has been fully prepared, select the appropriate size trial glenoid. The trial is inserted into the keel slot using the trial grasper and can be seated with the impactor. | Figure 32



Figure 32

Two windows, anterior and posterior, allow visualization of the bone to trial interface. If the trial has acceptable backside support, remove the trial with the grasper. | **Figure 33**

Figure 33

It is recommended to carefully clean and dry the glenoid surface and keel slot prior to cementing.

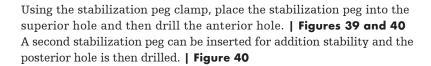
Once the glenoid is clean and dry, introduce the bone cement and impact the final implant | Figures 34, 35 and 36. It is recommended to maintain pressure on the face of the glenoid with the impactor while the cement hardens. It is not recommended to cement the back face of the glenoid. The cement mantle, at the face, should be less than 1mm.*

Note: The keel should not be altered in any manner prior to implantation.

Note: Once a specific anchorage size (S/M or L/XL) has been prepared, it is not advisable to upsize or downsize the implant.

Figure 34

Figure 36


^{*}Long-term results of cancellous compaction technique for glenoid replacement in total shoulder arthroplasty for primary osteoarthritis. O. Verborgt, G. Walch, V. Belloti, and D. Gazielly.

Preparing the peg holes

To prepare the peripheral holes, begin by selecting the S/M or L/XL pegged peripheral drill guide.

Attach the drill guide to the drill guide handle and insert the post on the backside of the guide into the central hole. | Figure 37

Align the drill guide on the glenoid. With the drill guide in place, attach the peripheral drill bit to the drill/reamer driver. Drill the superior hole until the collar of the drill bit contacts the guide. | Figure 38

The stabilization pegs can then be removed along with the guide.

Figure 37

Figure 38

Figure 39

Figure 40

Positioning the pegged glenoid component

Once the peripheral holes have been fully prepared, select the appropriate size trial glenoid. The trial is inserted into the glenoid using the trial grasper and can be seated with the impactor. | Figure 41

Figure 41

Two windows, anterior and posterior, allow visualization of the bone to trial interface. | **Figure 42** If the trial has acceptable backside support, remove the trial with the grasper.

Figure 42

It is recommended to carefully clean and dry the glenoid surface and peg holes prior to cementing.

Once the glenoid is clean and dry, introduce the bone cement and impact the final implant. It is not recommended to cement the back face of the glenoid. | Figures 43 and 44 It is recommended to maintain pressure on the face of the glenoid with the impactor while the cement hardens.*

Figure 43

Note: The pegs should not be altered in any manner prior to implantation. **Note:** Once a specific anchorage size (S/M or L/XL) has been prepared,

it is not advisable to upsize or downsize the implant.

*Long-term results of cancellous compaction technique for glenoid replacement in total shoulder arthroplasty for primary osteoarthritis. O. Verborgt, G. Walch, V. Belloti, and D. Gazielly.

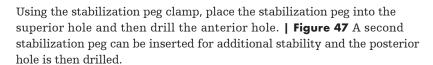
Figure 44

Implantation of the Cortiloc pegged glenoid

Preparing the peg holes

If not completed in a previous step, the central hole should be enlarged at this time.

To enlarge the hole, attach the appropriate length (S/M or L/XL) 8.4mm Cortiloc Drill Bit to the drill/reamer driver. Then assemble the Cortiloc Central Drill Guide to the drill guide handle.


Place the drill guide on the reamed glenoid. Drill until the collar of the bit contacts the guide. | Figure 45 (The drill bit is provided with a laser etch line which represents the depth to be drilled for those who prefer not to use the drill guide.)

Once completed, remove the drill guide and prepare the peripheral holes.

To prepare the peripheral holes, begin by selecting one of the S/M or L/XL Cortiloc Drill Guides.

Attach the drill guide to the drill guide handle and insert the tip post on the backside of the guide into the central hole.

Align the drill guide on the glenoid. With the drill guide in place, attach the peripheral drill bit to the drill/reamer driver. Drill the superior hole until the collar of the drill bit contacts the guide. | Figure 46

The stabilization pegs can then be removed along with the guide.

Figure 45

Figure 46

Figure 47

Implantation of the Cortiloc pegged glenoid

Positioning the Cortiloc Glenoid Component

Once the peripheral holes have been fully prepared, select the appropriate size trial glenoid. The trial is inserted into the glenoid using the trial grasper and can be seated with the impactor. | Figure 48

Figure 48

Two windows, anterior and posterior, allow visualization of the bone to trial interface. | **Figure 49** If the trial has acceptable backside support, remove the trial with the grasper.

It is recommended to carefully clean and dry the glenoid surface and peg holes prior to cementing.

Once the glenoid is clean and dry, introduce the bone cement and impact the final implant. It is not recommended to cement the back of the glenoid. | Figure 50 It is recommended to maintain pressure on the face of the glenoid with the impactor while the cement hardens.*

The final implant can then be inserted with the trial grasper and seated using the impactor. It is recommended to maintain pressure on the face of the glenoid with the impactor while the cement hardens.

Note: The pegs should not be altered in any manner prior to implantation.

Note: Once a specific anchorage size (S/M or L/XL) has been prepared, it is not advisable to upsize or downsize the implant.

Reduction testing and closure

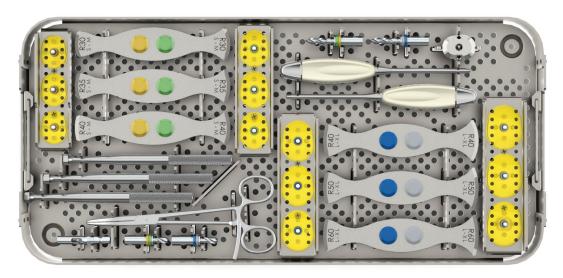

The reduction of the joint, testing of mobility and stability and closure is described in detail in the humeral operative technique.

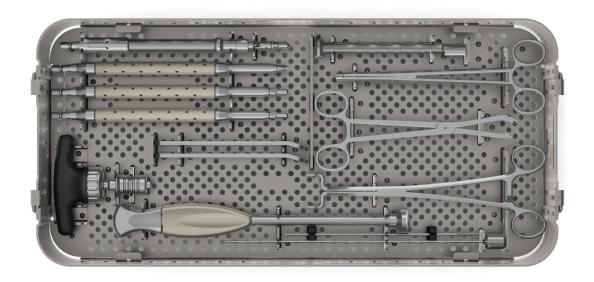
Figure 49

Figure 50

^{*}Long-term results of cancellous compaction technique for glenoid replacement in total shoulder arthroplasty for primary osteoarthritis. O. Verborgt, G. Walch, V. Belloti, and D. Gazielly.

Common tray - upper level (Ref. YKAD210 or YKAD210A full-moon/YKAD210B half-moon)

Reference	Description
MWE011	S30 sizer
MWE012	S35 sizer
MWE013	S40 sizer
MWE014	M30 sizer
MWE015	M35 sizer
MWE016	M40 sizer
MWE017	L40 sizer
MWE018	L50 sizer
MWE019	L60 sizer
MWE020	Xl40 sizer
MWE021	Xl50 sizer
MWE022	Xl60 sizer
MWE031	Radius gauge – small/medium 30mm
MWE032	Radius gauge – small/medium 35mm
MWE033	Radius gauge – small/medium 40mm
MWE034	Radius gauge – large/extra large 40mm


Reference	Description
MWE035	Radius gauge – large/extra large 50mm
MWE036	Radius gauge – large/extra large 60mm
MWE040	Central hole drill guide – 6mm
MWE111	Pin guide 0°
MWE112	Pin guide 5°
MWE113	Pin guide 10°
MWE042	Drill guide handle
MWB253	Pin driver
MWE153	Cannulated central hole drill bit – 6mm small/medium
MWE154	Central holed drill bit – 6mm small/medium
MWE155	Cannulated central hole drill bit – 6mm large/extra large
MWE156	Central holed drill bit – 6mm large/extra large

YKAD210A Full-moon reamers

MWE160	S30 full-moon reamer
MWE161	S35 full-moon reamer
MWE162	S40 full-moon reamer
MWE163	M30 full-moon reamer
MWE164	M35 full-moon reamer
MWE165	M40 full-moon reamer
MWE166	L40 full-moon reamer
MWE167	L50 full-moon reamer
MWE168	L60 full-moon reamer
MWE169	Xl40 full-moon reamer
MWE170	Xl50 full-moon reamer
MWE171	Xl60 full-moon reamer
MWE110	Sizer clamp

YKAD210B Half-moon reamers

I KADZ I OD III	an-moon reamers
MWE260	S30 half-moon reamer
MWE261	S35 half-moon reamer
MWE262	S40 half-moon reamer
MWE263	M30 half-moon reamer
MWE264	M35 half-moon reamer
MWE265	M40 half-moon reamer
MWE266	L40 half-moon reamer
MWE267	L50 half-moon reamer
MWE268	L60 half-moon reamer
MWE269	Xl40 half-moon reamer
MWE270	Xl50 half-moon reamer
MWE271	Xl60 half-moon reamer

Common tray - lower level (Ref. YKAD210)

Reference	Description
MWE044	Stabilization peg remover
MWE046	Glenoid impactor
MWD552	12mm wrench
MWE150	Articulated driver
MWE151	Cannulated reamer driver
MWE152	Cannulated drill/reamer driver w/ tip
MWE080 or MWE180	T-handle – SZH
MWB236	Cleaning rod
MWE114	Glenoid grasper
MWA652	Trial grasper
MWE157	Alignment pin
MWE158	Quick release handle

Keeled tray (Ref. YKAD213)

Reference	Description
MWE095	Keeled peripheral drill guide – small/medium
MWE096	Keeled peripheral drill guide – large/extra large
MWE097	Stabilization peg – 5mm
MWE098	Stabilization peg – 6mm
MWE199	Peripheral drill bit – 5mm
MWE201	Peripheral drill bit – 6mm
MWE101	Keeled punch – small/medium
MWE102	Keeled punch – large/extra large
MWE501	S30 keeled glenoid trial
MWE502	S35 keeled glenoid trial
MWE503	S40 keeled glenoid trial
MWE511	M30 keeled glenoid trial
MWE512	M35 keeled glenoid trial
MWE513	M40 keeled glenoid trial
MWE521	L40 keeled glenoid trial
MWE522	L50 keeled glenoid trial
MWE523	L60 keeled glenoid trial
MWE531	Xl40 keeled glenoid trial
MWE532	Xl50 keeled glenoid trial
MWE533	Xl60 keeled glenoid trial

Pegged tray (Ref. YKAD212)

Reference	Description
MWE090	Pegged peripheral drill guide – small/medium
MWE091	Pegged peripheral drill guide – large/extra large
MWE083	Stabilization peg – 5.4mm
MWE200	Peripheral drill bit dia – 5.4mm
MWE301	S30 pegged glenoid trial
MWE302	S35 pegged glenoid trial
MWE303	S40 pegged glenoid trial
MWE311	M30 pegged glenoid trial
MWE312	M35 pegged glenoid trial
MWE313	M40 pegged glenoid trial
MWE321	L40 pegged glenoid trial
MWE322	L50 pegged glenoid trial
MWE323	L60 pegged glenoid trial
MWE331	Xl40 pegged glenoid trial
MWE332	Xl50 pegged glenoid trial
MWE333	Xl60 pegged glenoid trial

Cortiloc pegged tray (Ref. YKAD211)

Reference	Description
MWE081	Cortiloc peripheral drill guide – small/medium
MWE082	Cortiloc peripheral drill guide – large/extra large
MWE083	Stabilization peg – 5.4mm
MWE200	Peripheral drill bit dia – 5.4mm
MWE085	Cortiloc central drill guide
MWE202	Cortiloc cannulated central drill bit – small/medium
MWE203	Cortiloc cannulated central drill bit – large/extra large
MWE204	Cortiloc central drill bit – small/medium
MWE205	Cortiloc central drill bit – large/extra large
MWE401	S30 Cortiloc pegged glenoid trial
MWE402	S35 Cortiloc pegged glenoid trial
MWE403	S40 Cortiloc pegged glenoid trial
MWE411	M30 Cortiloc pegged glenoid trial
MWE412	M35 Cortiloc pegged glenoid trial
MWE413	M40 Cortiloc pegged glenoid trial
MWE421	L40 Cortiloc pegged glenoid trial
MWE422	L50 Cortiloc pegged glenoid trial
MWE423	L60 Cortiloc pegged glenoid trial
MWE431	XL40 Cortiloc pegged glenoid trial
MWE432	XL50 Cortiloc pegged glenoid trial
MWE433	XL60 Cortiloc pegged glenoid trial

Keeled glenoid

Reference	Description
DWE501	S30 keeled glenoid
DWE502	S35 keeled glenoid
DWE503	S40 keeled glenoid
DWE511	M30 keeled glenoid
DWE512	M35 keeled glenoid
DWE513	M40 keeled glenoid
DWE521	L40 keeled glenoid
DWE522	L50 keeled glenoid
DWE523	L60 keeled glenoid
DWE531	XL40 keeled glenoid
DWE532	XL50 keeled glenoid
DWE533	XL60 keeled glenoid

Pegged glenoid

Reference	Description
DWE301	S30 pegged glenoid
DWE302	S35 pegged glenoid
DWE303	S40 pegged glenoid
DWE311	M30 pegged glenoid
DWE312	M35 pegged glenoid
DWE313	M40 pegged glenoid
DWE321	L40 pegged glenoid
DWE322	L50 pegged glenoid
DWE323	L60 pegged glenoid
DWE331	XL40 pegged glenoid
DWE332	XL50 pegged glenoid
DWE333	XL60 pegged glenoid

Cortiloc pegged glenoid

Reference	Description
DWE401	S30 Cortiloc glenoid
DWE402	S35 Cortiloc glenoid
DWE403	S40 Cortiloc glenoid
DWE411	M30 Cortiloc glenoid
DWE412	M35 Cortiloc glenoid
DWE413	M40 Cortiloc glenoid
DWE421	L40 Cortiloc glenoid
DWE422	L50 Cortiloc glenoid
DWE423	L60 Cortiloc glenoid
DWE431	XL40 Cortiloc glenoid
DWE432	XL50 Cortiloc glenoid
DWE433	XL60 Cortiloc glenoid

Miscellaneous order information

Reference	Description
DWD014	Pressurization kit peg glenoid
DWD013	Cement scraper
DWD015	Peg nozzle
DWD011	Pressurization kit keeled glenoid
DWD012	Keel nozzle
DWD013	Cement scraper
MWE157 (1)*	Non-sterile pin – 2.5mm x 200mm
DWD063 (2)*	Sterile single use pin – 2.5mm x 200mm
MWB319 (2)*	Non-sterile pin – 2.5mm x 200mm
DWD168 (1)*	Sterile single use pin – 2.5mm x 200mm

^{* (1)} Smooth tip pin (2) Threaded pin

Notes	

Notes

This document is intended solely for the use of healthcare professionals. A surgeon must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. Stryker does not dispense medical advice and recommends that surgeons be trained in the use of any particular product before using it in surgery.

The information presented is intended to demonstrate a Stryker product. A surgeon must always refer to the package insert, product label and/or instructions for use, including the instructions for cleaning and sterilization (if applicable), before using any Stryker product. Products may not be available in all markets because product availability is subject to the regulatory and/or medical practices in individual markets. Please contact your Stryker representative if you have questions about the availability of Stryker products in your area.

The instructions for use, operative techniques, cleaning instructions, patient information leaflets and other associated labeling may be requested online at ifu.stryker.com or wright.com. If saving the instructions for use, operative techniques, cleaning instructions from the above mentioned websites, please make sure you always have the most up to date version prior to use.

Stryker Corporation or its divisions or other corporate affiliated entities own, use or have applied for the following trademarks or service marks: Aequalis, Affiniti, Cortiloc, Perform, Simpliciti, Stryker, Tornier. All other trademarks are trademarks of their respective owners or holders

Content ID: AP-015234A 07-June-2021 Copyright © 2021 Stryker

Manufacturer:

Tornier SAS 161 Rue Lavoisier 38330 Montbonnot Saint Martin

stryker.com