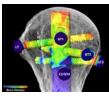
T2 Alpha®

Humeral Nail

Design rationale

<u>stryker</u>


T2 Alpha Humerus

Instrumentation & platform overview

Nail specifications

Long Nail	Diameters: Ø7-10mm
	Lengths: 180-315mm 15mm increments
Short Nail	Ø8mm × 150mm

Stryker Orthopedic Modeling and Analytics (SOMA) Designed Straight Nail¹

725 CT scans analyzed across multiple ethnicities and age groups to optimize the anatomic fit and determine size offerings¹ SOMA defined screw trajectories to capture relevant anatomy (greater tuberosity, lesser tuberosity, calcar) in typical fracture patterns²

Ø4mm Screws (20-60mm)

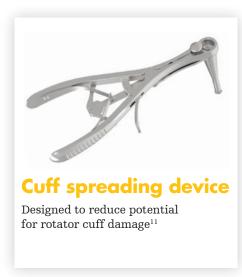
IMN Locking Screws

Advanced Locking Screws

Offers **increased axial stability** in any 4mm round locking hole when engaged with the nail's internal threads, providing a 38% increase in fatigue strength compared to standard Ø4mm IMN locking screws.^{3,10}

Washers

- Increases surface area while reducing screw head prominence and improves bone fragment compression¹²
- Countersinks screw 1.5mm
- Includes suture holes



Instrumentation made easy

Utilizes a single core tray across all Gamma4 and T2 Alpha indications to enhance platform consistency and ease of use.

stryker

T2 Alpha Humerus

Long Nail

Length: 180-315mm (15mm increments)

Five screw multiplanar fixation

SOMA defined trajectories to capture relevant anatomy:2

- 3 greater tuberosity
- 1 lesser tuberosity
- 1 calcar

End Caps

Proximal Screw Positioning

Screw placed with the triangle formed by the posterior border of the bicipital groove and the cranial border of the greater tuberosity to support proper rotational alignment¹¹ and guide positioning of subsequent screws

Transverse Calcar Screw

Biomechanically equivalent in strength compared to the Tornier nail ascending calcar screw⁶

PEEK Insert

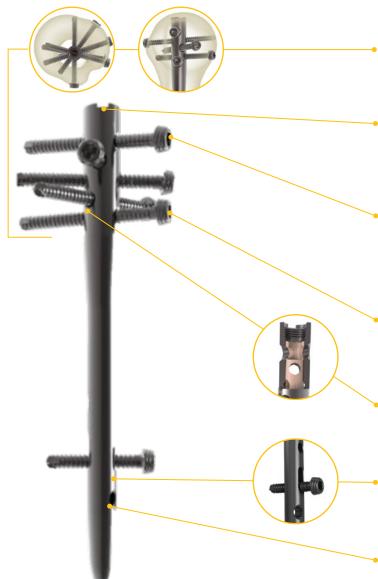
Reduces potential for screw backout with locking screw or advanced locking screw⁵

6mm of Active Intraoperative Compression

Allows for a more controlled reduction of the fragments when compared to the traditional backslapping method¹²

Four Distal Screws

Can reduce implant toggle and facilitate higher construct stability, especially in the early postoperative stage^{7,8}


Distal Screw Targeting

- Targets AP and oblique screw holes
- May reduce radiation exposure and time for distal screw placement compared to traditional freehand technique9

stryker

T2 Alpha Humerus

Short Nail

Diameter: Ø8mm

Length: 150mm

Five screw multiplanar fixation

SOMA defined trajectories to capture relevant anatomy:2

- 3 greater tuberosity
- 1 lesser tuberosity
- 1 calcar

End Caps

Proximal Screw Positioning

Screw placed with the triangle formed by the posterior border of the bicipital groove and the cranial border of the greater tuberosity to support proper rotational alignment¹¹ and guide positioning of subsequent screws

Transverse Calcar Screw

Biomechanically equivalent in strength compared to the Tornier nail ascending calcar $screw^6$

PEEK Insert

Reduces potential for screw backout with locking screw or advanced locking screw 5

Three Distal Screw Holes

- 2 static
- 1 dynamic

Two Planes

30 degrees

References:

- Internal Report № D0000353370, Rev AA.
- 2. Internal Report № D0000305724, Rev AA..
- 3. Hoffmann S, Gerber C, et al. Effect of angular stability and other locking parameters on the mechanical performance of intramedullary nails. Biomed Tech (Berl). 2015;60(2):157-64. doi: 10.1515/bmt-2014-0100.
- 4. Konda SR, Maseda M, et al. Observational prospective unblinded case-control study to evaluate the effect of the Gamma3® distal targeting system for long nails on radiation exposure and time for distal screw placement, Injury. 2023;54(2):677-682. doi:10.1016/j. injury.2022.11.046.
- 5. Internal Report № D0000379920, Rev AC.
- 6. Internal Report № D0000350215, Rev AB
- Naidu SH, Bixler B, et al. Percutaneous pinning of proximal humerus fractures: a biomechanical study. Orthopedics. 1997;20(11):1073–6.24.
- 8. Horn J, Gueorguiev B, et al. Biomechanical evaluation of two-part surgical neck fractures of the humerus fixed by an angular stable locked intramedullary nail. J Orthop Trauma. 2011;25(7):406–13.]
- 9. Stanley M, Huang K, et al. A Targeting Arm for Interlocking Screws Reduces Radiation Exposure: Results of a Prospective Randomized Controlled Trial. J Orthop Trauma. 2025 Sep 2. doi: 10.1097/BOT.00000000000003066. Epub ahead of print. PMID: 40892974.
- 10. Internal Reports $\,$ A0048188, Rev AA , $\,$ A0049772, Ver 1 $\,$ A0044113, Rev AA
- 11. Validation lab report Internal Report № D0000373334, Rev AB
- 12. DIOVV: Internal Report no. D0000276775, Rev AF.

The information presented is intended to demonstrate the breadth of Stryker product offerings. A surgeon must always refer to the package insert, product label and/or instructions for use, including the instructions for cleaning and sterilization (if applicable), before using any Stryker product. Products may not be available in all markets because product availability is subject to the regulatory and/or medical practices in individual markets. Please contact your Stryker representative if you have questions about the availability of Stryker products in your area.

The instructions for use, operative techniques, cleaning instructions, patient information leaflets and other associated labeling may be requested online at ifu.stryker.com or stryker.com. If saving the instructions for use, operative techniques, cleaning instructions from the above mentioned websites, please make sure you always have the most up to date version prior to use.

Stryker Corporation or its divisions or other corporate affiliated entities own, use or have applied for the following trademarks or service marks: Gamma4, SOMA, Stryker, T2 Alpha. All other trademarks are trademarks of their respective owners or holders.

Manufacturer: Stryker GmbH Bohnackerweg 1 2545 Selzach, Switzerland

stryker.com