

Trident® II Tritanium®

Acetabular System

トライデント || 寛骨臼シェルシステム

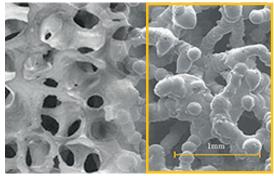
築き上げた実績から 生み出した次世代*の製品

Additive Manufacturing

ストライカーが誇る、3Dポーラス製造技術

What is additive manufacturing?

Additive Manufacturing (AM) は、インプラントのCADデータを用 いて、純チタンの粉末を一層ごとに溶融結合させ、立体的に製品を作 り出す造形技術です。トライデント II 寛骨臼シェルでは、LRM(Laser Rapid Manufacturing)と呼ばれる、集束レーザービームを使用して 金属粉末の層を溶融する方式を採用しています。



Trident II Tritanium

Additive Manufacturingにより、非常に微細な構造を製造でき、整形 外科用インプラントとしては膝関節・脊椎製品でこの製造方式が採 用されてきました。トライデント II 寛骨臼シェルもこの製造方法を 採用することで、複雑な特徴を有する海綿骨に類似したポーラス構造 を形成し、生物学的固定を促し、長期にわたる良好な固定をサポート します。」

平均気孔径²	434 μm	平均気孔率 ²	60%
表面*1気孔率2	76%	摩擦係数3,4	1.2

Tritanium

薄いウォール

トライデント II 寛骨臼シェルは、Additive Manufacturingにより可 能となった薄いウォールを特長としています。これにより大径骨頭と 適切な厚みのポリエチレン選択が可能となり、可動域の拡大が、関節の 安定性5、および脱臼リスクの低下に寄与します。6

トライデント II 寛骨臼シェル 外径(mm)	48	50	52
最大骨頭径(mm)	36	36	40

築き上げられた実績

トライデント II 寛骨臼シェルは、トライデントのインナーチェンジ ロッキング機構を採用し、長年にわたって臨床で築き上げられたデー タ⁷⁻¹¹に基づく、信頼性が高い製品を目指して生み出しました。 ベアリングは、モジュラーデュアルモビリティ(MDM)、ハイクロス リンクポリエチレン X3などの臨床的に実証された9-11製品から柔軟 に選択が可能です。

インナーチェンジロッキング機構

X3 ポリエチレン

MDM

^{*1} 最大200ミクロンの深度として定義される表面

Trident® II Tritanium® Acetabular System

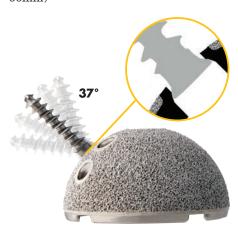
SOMAで検証した*2スクリューホールパターン

SOMA (Stryker Orthopaedics Modeling and Analytics) は、ストライカーが開発 した整形外科製品設計用のモデリング・分析システムです。SOMAは高分解能の CTデータを収集した大規模なデータベースであり、そこからサイズ・形状・

密度・皮質骨内外の境界を導き出すことができます。このデータベースは、年齢、 性別、人種を含む多様な骨データから構成されています。

トライデント II 寛骨臼シェルでは、寛骨臼の安全領域において複数のスクリュー 固定をするために、SOMAをもとにスクリューホールの配置を設計し検証されて います。12トライデント II 寛骨臼シェル マルチホールには、大きいサイズで最大 13個のスクリューホールがあります。

*² 520以上のCTデータに基づく



SOMAで検証したスクリューホールパターン (トライデント II 寛骨臼シェル マルチホール 66mm)

ライナーへの干渉を抑える構造

トライデント II 寛骨臼シェルのスクリューホールは、Additive Manufacturing によって可能になった特徴的な形状をしています。ロープロファイルHexスク リュー(6.5mm)と組み合わせることで、スクリューホールの深部にスクリュー ヘッドを固定し、設置されるライナーへの干渉を抑えることができます。

そのため、トライデントII 寛骨臼シェルでは、平均37度の範囲でスクリューの設 置角度を自在に調整できます。13

器械の特長

ハンドフリーパッケージ14

打ち込む前にインプラントへの不要な接触 を避けられます。

ボールジョイントドリルシャフト

他の一般的なドリルシャフトに見られる オープンコイルデザインではなく、軟部組織 の巻き込みを避け、様々な角度でドリリン グができるよう設計されています。

シェルを簡単に装着し、カップ設置 を素早く調整できるように設計さ れています。

カタログ番号一覧

*印はオプションサイズとなります。お問い合わせください。

トライデント || 寛骨臼シェル ノンホール

トライデント|| 寛骨臼シェル クラスターホール

トライデントII	寛骨臼シェル
マルチホール	150

トライデントII ロープロファイルHEXスクリュー

カタログ番号	外径	コード
700-04-42A*	42mm	A
700-04-44B	44mm	В
700-04-46C	46mm	C
700-04-48D	48mm	D
700-04-50D	50mm	D
700-04-52E	52mm	E
700-04-54E	54mm	E
700-04-56F	56mm	F
700-04-58F	58mm	F
700-04-60G*	60mm	G
700-04-62G*	62mm	G
700-04-64H*	64mm	H
700-04-66H*	66mm	H

カタログ番号	外径	ホール	コード
702-04-42A*	42mm	3	A
702-04-44B	44mm	3	В
702-04-46C	46mm	3	С
702-04-48D	48mm	3	D
702-04-50D	50mm	3	D
702-04-52E	52mm	5	E
702-04-54E	54mm	5	E
702-04-56F	56mm	5	F
702-04-58F	58mm	5	F
702-04-60G*	60mm	5	G
702-04-62G*	62mm	5	G
702-04-64H*	64mm	5	H
702-04-66H*	66mm	5	Н

カタログ番号	外径	ホール	コード
709-04-42A*	42mm	8	A
709-04-44B	44mm	8	В
709-04-46C	46mm	8	C
709-04-48D	48mm	9	D
709-04-50D	50mm	9	D
709-04-52E	52mm	11	E
709-04-54E	54mm	11	E
709-04-56F	56mm	13	F
709-04-58F	58mm	13	F
709-04-60G*	60mm	13	G
709-04-62G*	62mm	13	G
709-04-64H*	64mm	13	H
709-04-66H*	66mm	13	Н

	W-	
カタログ番号	径	長さ
7030-6515	6.5mm	15mm
7030-6520		20mm
7030-6525		25mm
7030-6530		30mm
7030-6535		35mm
7030-6540*		40mm
7030-6545*		45mm
7030-6550*		50mm
7030-6555*		55mm
7030-6560*		60mm

トライデント 単回使用 滅菌ドリルビット

カタログ番号	仕様
7005-4015S	4.0mm × 15mm
7005-4025S	4.0mm × 25mm
7005-4040S	4.0mm × 40mm
7005-4060S	4.0mm × 60mm

トライデントII 寛骨臼ドームホールプラグ

カタログ番号	仕様
7060-0000	HEX

トライデント ライナー X3 ポリエチレン厚(mm)

カップサー (mm)	イズ	42	44	46	48 50	52 54	56 58	60 62	64 66
コード		A	В	С	D	E	F	G	Н
	44mm	-	-	-	-	_	3.8	5.4	7.1
	40mm	-	-	-	-	3.8	5.8	7.4	9.1
骨頭径	36mm	_	-	-	3.9	5.9	7.9	9.4	11.2
	32mm	_	3.9	4.9	5.9	7.9	9.9	11.4	13.2
	28mm	4.9	5.9	6.9	7.9	9.9	11.9	13.4	15.2

MDM 互換性

—						
外径(mm)	46	48 50	52 54	56 58	60 62	64 66
コード	С	D	Е	F	G	Н
MDM	36C	38D	42E	46F	48G	52H
ポリエチレンライナー						
外径(mm)	36	38	42	46	48	52
内径(mm)	22.2	22.2	28	28	28	28
ポリエチレン厚(mm)	6.7	7.7	6.8	8.8	8.8	11.8

参照

- 1. Stryker R&D Technical Memo; Comparison of Tritanium Porous Surface to Cancellous Bone. A0027625
- 2. Stryker R&D Technical Report: Characterizing the Physical Properties of the Trident II Tritanium Acetabular Shell. May 22, 2017. A0021722
- 3. Stryker R&D Technical Report: Evaluation of the Coefficient of Friction of the Trident II Tritanium Surface. Sep 01, 2016. A0015751
- 4. Stryker R&D Technical Memo: Trident II Tritanium Acetabular Shell Coefficient of Friction Equivalence Rationale. Oct 24, 2017. A0026809
- 5. Burroughs B, et al. Range of Motion and Stability in Total Hip Arthroplasty with 28-, 32-, 38- and 44-mm Femoral Head Sizes In Vitro Study. The Journal of Arthorplasty, Vol. 20, No. 1, 2005 pp. 11-19.
- 6. Berry D.J., et al. Effect of Femoral Head Diameter and Operative Approach on Risk of Dislocation After Primary Total Hip Arthroplasty. J of Bone and Joint Surgery Vol. 87-A, No. 11 (2005); pp. 2456-2463.
- 7. Australian Orthopedic Association National Joint Replacement Registry, 2017 Annual Report.
- 8. UK National Joint Registry, 2017 Report.
- 9.D'Antonio J, et al. Second-Generation Annealed Highlight Crosslinked Polyethylene has Low Wear at Mean Seven Year Follow-up. Surgical Technology International. 2014 Nov;25:219-26. 10.Jauregui J, et al. Dual Mobility Cups: an Effective Prosthesis in Revision Total Hip Arthroplasties for Preventing Dislocations. Hip Int. 2016 Jan-Feb; 26(1):57-61.
- 11.Su E, et al. The Role of Constrained Liners in Total Hip Arthroplasty. Clin Orthop. 2004;420:122–129.
- 12.SOMA Screw Engagement. Stryker R&D Test Report A0026638. October, 2017. SOMA verification at 45° inclination/20° anteversion.
- 13. Stryker R&D Technical Report: Trident II Screw Angulation Memo. December 7, 2017. A0026941
- 14.Internal memo: Nurse Appreciation Day VOC. July 28, 2017. A0029201.

医療機器承認/届出番号	販売名
30200BZX00145000	トライデントⅡ 寛骨臼シェルシステム
13B1X10209000946	トライデントⅡ手術器械
21900BZY00055000	トライデントHA寛骨臼カップシステム

医療機器承認/認証番号	販売名
-------------	-----

303AFBZX00049000 人工関節用単回使用手術器械 22100BZX01000000 X3寛骨臼ライナー

医療機器承認番号 22400BZX00459000 MDM/ADM寛骨臼システム

22300BZX00018000 BIOLOX deltaセラミックフェモラルヘッド

Japan

この印刷物はストライカー社の製品を掲載しています。全てのストライカー社製品は、ご使用の前にその添付文書・製品ラベル・取扱説明書を ご参照ください。この印刷物に掲載されております仕様・形状は改良などの理由により、予告なしに変更されることがあります。ストライカー社 製品についてご不明な点がありましたら、弊社までお問合せください。

® マークの付いた製品名は、ストライカーグループの登録商標です。

Literature Number:HE01-161_Rev1 AN/SJ/TL 2m 11/22

日本ストライカー株式会社

112-0004東京都文京区後楽2-6-1 飯田橋ファーストタワー P 03 6894 0000

www.stryker.com/jp