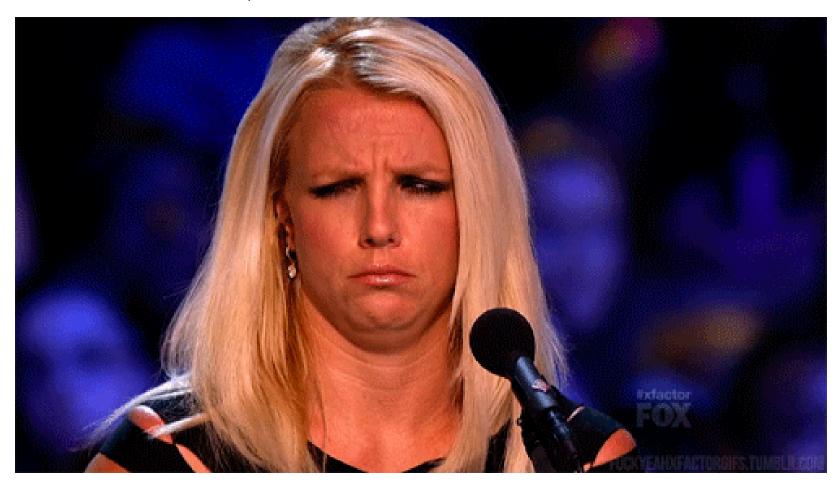
RESUSCITATION STUDIES YOU SHOULD KNOW ABOUT!

NATIONAL TEACHING INSTITUTE - 2019

Nicole Kupchik MN, RN, CCNS, CCRN-K, PCCN-CMC

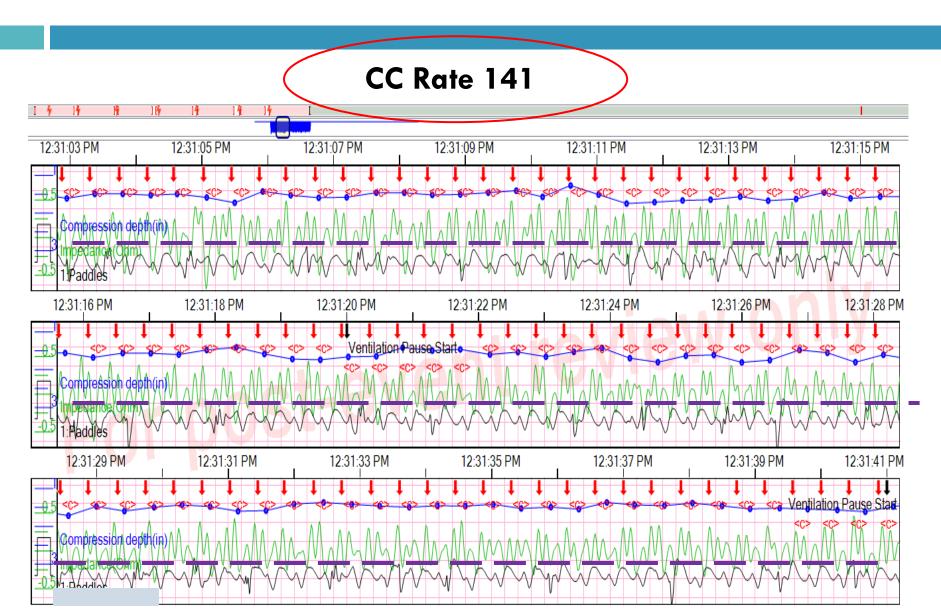


Discuss issues with CPR performance in hospitals

- Describe challenges to providing high quality CPR
- Discuss the data behind the use of mechanical CPR devices

Let's start with cardiac arrest basics...

In resuscitation, what matters?



In resuscitation, what matters?


2015 Guidelines overview

- □ Chest compression rate 100 120/min
 - Depth 2 2.4 inches
- Minimize peri-shock pauses
- Do NOT over-ventilate!!!
- Utilize Capnography for ET placement, CPR quality, ROSC
- Medications:
 - Epinephrine 1 mg every 3 5 min
 - Amiodarone 300 mg IV for ventricular fibrillation

Depth with fast CPR rates

Minute by minute breakdown

2013 CPR Quality Consensus Statement

"Poor quality CPR should be considered

a preventable harm"

2018: "Poor quality CPR <u>IS</u> a preventable harm"

Meany, Bobrow, Mancini et al (2013) Circulation 128(4):417-435

TEAM PERFORMANCE

What do top performing systems look like?

- Large variations in cardiac arrest survival
- □ GWTG Registry 2012 2014
- Identified top performing hospitals
- Geographically & academically diverse hospitals
- Top, middle & bottom quartiles in survival
- On-site in-depth interviews with clinical staff at 9 hospitals:
 - Nurses (45.6%)
 - Physicians (17.1%)
 - Other clinical staff (17.1%)
 - Administration (20.3%)

Top performing systems had 4 things in common:

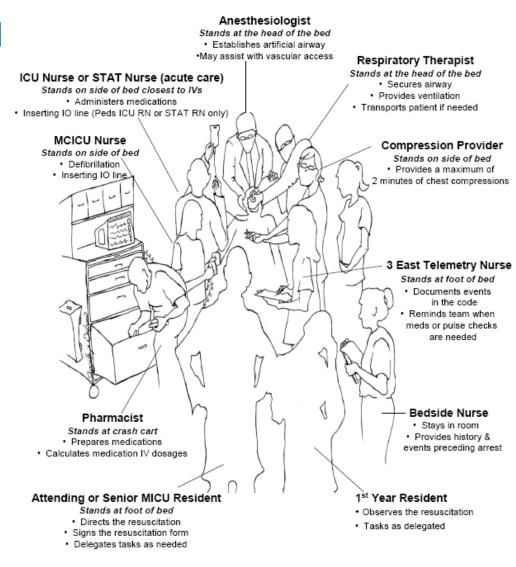
1) Team design

2) Team composition & roles

3) Communication & leadership during the arrest

4) Training & Education

Are humans as important as Formula One?



High Performance Team

Clear team leader

 Understand not only your role, but the role of others on the team

 Anticipate what needs to happen next

Other Code Blue Team Members:

Lab: Performs blood gas analysis ensures the team is aware of the results; Spiritual Care: Stays with family during resuscitation; Nursing Supervisor: Ensures adequate staff on unit; assigns ICU bed if needed

Recommendations:

I mean the days of, you know, letting the nursing student or the paramedic student do the CPR, they just... they don't really happen anymore.

> —Emergency Medicine Nurse; Hospital G; Top-Performing

In contrast, a bottom-performing hospital valued this skill less and suggested it was easily performed by less experienced providers.

We teach the techs that they can do compressions in code situations. If we have nursing students, we'll let them do compressions. We have plenty of people to rotate through in general so we'll rotate anyone through to do compressions.

---Nursing Education; Hospital F; Bottom-Performing

Last, crowd control was universally considered a problem because of the arrival of nonteam members.

Our biggest problem is too many people show up... We have codes where there's 17 to 22 people who respond...So sometimes it's difficult determining who's in charge of this code...

-Nursing Supervisor; Hospital I; Bottom-Performing

suscitation Teams

Recommenda Top-performing hospitals also tended to have clearly <u>n-hospital cardiac a</u> nould ensure the p

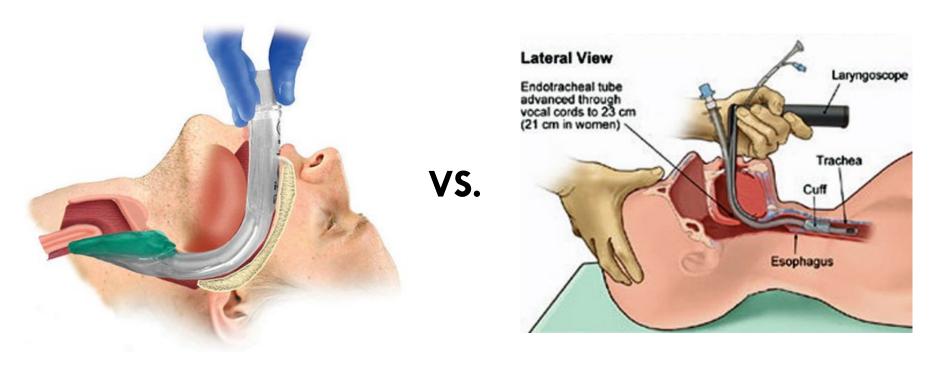
iplines during in-he Fifteen years ago when I started it was a free for all.... hysician, nursing, t So when (Medical Director) took over and, and kind macy expertise. should develop syste while ensuring the av what you're supposed to do, and there's no as needed.

-Critical Care Nurse; Hospital G; Top-Performing

At non-top-performing hospitals, specific roles and ad in the early minute responsibilities of members were less clear, even well into iclude a focus on con the response, generating variable degrees of distress.

Dus access. Very honestly things are more chaotic... I just feel a difshould encourage the ferent level of anxiety when you come to these codes nes that improve com and roles are not always as clearly defined.

It's kind of situation by situation...Respiratory always point poi


should implement n —Emergency Medicine Physician; Hospital B; gular and unschedule itient rooms and high-risk areas; (3) iplinary; and (4) include post-mock code

.....g.

ADVANCED AIRWAY PLACEMENT

How should EMS manage airways?

Tracheal intubation with ETT or laryngeal airways?

The PART Trial

- <u>Pragmatic</u> <u>A</u>irway <u>R</u>esuscitation <u>T</u>rial
- NIH funded
- 3,004 OHCA needing airway placement
- 27 EMS agencies, Randomized cross-over study
 - EMS agency assigned to LG for 3 5 months, then ETI alternating

Success rates:

- 90.3% Laryngeal intubation
- 51.6% Endotracheal intubation

Findings:

	-		
Characteristic	Laryngeal Tube (n = 1505)	Endotracheal Intubation (n = 1499)	
Age, median (IQR), y	64 (53-76)	64 (53-76)	
Male, no./total No. (%)	928/1503 (61.7)	901/1499 (60.1)	
Witnessed arrest, no./total No. (%)	n = 1357	n = 1399	
EMS witnessed	180 (13.3)	179 (12.8)	
Bystander witnessed	511 (37.7)	529 (37.8)	
Not witnessed	666 (49.1)	691 (49.4)	
Unknown ^a	148 (9.8)	100 (6.7)	
Bystander chest compressions, no./No. (%)	n = 1258	n = 12/9	
Yes	698 (55.5)	709 (55.4)	
No	560 (44.5)	570 (44.6)	
Unknown ^a	247 (16.4)	220 (14.7)	
Time from dispatch to first arrival of EMS			
Median (IQR), min	5.0 (3.9-6.3)	5.3 (4.1-6.8)	
≤4 min, no./total No. (%)	408/1444 (28.3)	305/1405 (21.7)	
Unknown	61 (4.1)	94 (6.3)	
Time between EMS arrival and start of chest compressions			
Median (IQR), min	2.1 (1.1-3.8)	2.1 (1.0-3.7)	
≤10 min, no./total No. (%)	1243/1347 (92.3)	1189/1279 (93.0)	
First electrocardiogram mythm, no./total No. (%)			
Shockable rhythm (ventricular fibrillation, ventricular tachycardia, or delivery of AED shock)	301 (20.0)	270 (18.0)	
Nonshockable (asystole, pulseless electrical activity, or AED nonshockable)	1160 (77.1)	1197 (79.9)	
Other	44 (2.9)	32 (2.1)	
Epinephrine administered before hospital arrival, no./total No. (%)	1385 (92.0)	1405 (93.7)	
Compliance with assigned airway intervention, no./total No. (%) ^b	1437 (95.5)	1360 (90.7)	
Transported to hospital, no./total No. (%)	906 (60.2)	889 (59.3)	
Hospital procedures, no./total No. (%) ^c			
Therapeutic hypothermia	242/460 (52.6)	185/400 (46.3)	
Coronary catheterization	109/460 (23.7)	73/400 (18.3)	
Patients per randomization cluster ^d			
Mean	lean 116 115		
Median (range)	94 (3-314)	66 (12-382)	

Table 1. Characteristics of Patients Included in Intention-to-Treat Population

Wang, H. et al. (2018) JAMA 320(8)

The PART Trial Results

Table 3. Out-of-Hospital and In-Hospital Adverse Events^a

Characteristic	Laryngeal Tube (n = 1505)	Endotracheal Intubation (n = 1499)	Difference, % (95% CI)	P Value
Out-of-Hospital Adverse Events				
Multiple (≥3) insertion attempts ^b				
Initial airway	6/1353 (0.4)	18/1299 (1.4)	-0.9 (-1.7 to -0.2)	.01
Across all airways	61/1353 (4.5)	245/1299 (18.9)	-14.4 (-17.0 to -11.7)	<.001
Unsuccessful insertion ^b				
First airway technique	159/1353 (11.8)	573/1299 (44.1)	-32.4 (-35.6 to -29.1)	<.001
All airway techniques	78/1353 (5.8)	111/1299 (8.5)	-2.8 (-4.8 to -0.8)	.01
Unrecognized airway misplacement or airway dislodgement	10/1353 (0.7)	24/1299 (1.8)	-1.1 (-2.0 to -0.3)	.01
Inadequate ventilation	25/1353 (1.8)	8/1299 (0.6)	1.2 (0.3 to 2.1)	.01
In-Hospital Adverse Events				
Pneumothorax (first chest x-ray) ^c	17/485 (3.5)	30/428 (7.0)	-3.6 (-6.5 to -0.7)	.02
Rib fractures (first chest x-ray) ^c	16/485 (3.3)	30/428 (7.0)	-3.8 (-6.9 to -0.7)	.01
Oropharyngeal or hypopharyngeal injury (first 24 h) ^d	1/460 (0.2)	1/400 (0.3)	0 (-0.7 to 0.6)	.92
Airway swelling or edema (first 24 h) ^d	5/460 (1.1)	4/400 (1.0)	0.1 (-1.3 to 1.4)	.90
Pneumonia or aspiration pneumonitis (first 72 h) ^d	120/460 (26.1)	89/400 (22.3)	3.7 (-2.1 to 9.6)	.21

The PART Trial Results

Table 2. Outcomes of Patients Included in the Primary and Secondary Analyses

	No. (%)	No. (%)		
Characteristic	Laryngeal Tube	Endotracheal Intubation	Difference,	0.1/21
Primary Outcome				
Survival to 72 h (intention-to-treat population)	275 (18.3)	230/1495 (15.4)	2.9 (0.2 to 5.6)	.04
Secondary Outcomes				
Return of spontaneous circulation	420 (27.9)	365 (24.3)	3.6 (0.3 to 6.8)	.03
Survival to hospital discharge	163/1504 (10.8)	121/1495 (8.1)	2.7 (0.6 to 4.8)	.01
Favorable neurologic status at discharge (Modified Rankin Scale score <3)	107/1500 (7.1)	75/1495 (5.0)	2.1 (0.3 to 3.8)	.02
Modified Rankin Scale score	n = 1500	n = 1495		
0-No symptoms	17 (1.1)	14 (0.9)		
1-No significant disability	32 (2.1)	29 (1.9)		
2-Slight disability	22 (1.5)	12 (0.8)		
3-Moderate disability	36 (2.4)	20 (1.3)		
4-Moderately severe disability	26 (1.7)	24 (1.6)		
5-Severe disability	26 (1.7)	22 (1.5)		
6-Dead	1341 (89.4)	1374 (91.9)		
Additional Analyses				
Per-protocol analysis-survival to 72 h	263/1437 (18.3)	209/1356 (15.4)	2.9 (0.1 to 5.7)	.045
Intention-to-treat post hoc adjusted analysis ^b			2.1 (-0.5 to 4.8)	.11
Per-protocol post hoc adjusted analysis ^b			2.3 (-0.4 to 5.1)	.09

^a For the primary analysis, the estimated difference in 72-hour survival accounted for interim monitoring and clustering via robust standard errors. All other comparisons accounted for clustering.

^b Post hoc analyses adjusted for age, sex, rhythm, response time, witness status, and bystander chest compressions. A total of 163 patients were omitted from post hoc models due to missing data.

Take home points...

"Our research revealed that sudden cardiac arrest patients who received the newer & easier to use laryngeal tube as the initial airway, had higher survival rate than those individuals who were randomized to an initial strategy of traditional endotracheal intubation.

Based on these results, we estimate that EMS providers could **save an additional 10,000-plus lives a year**,"

-Dr. Mohammed Daya

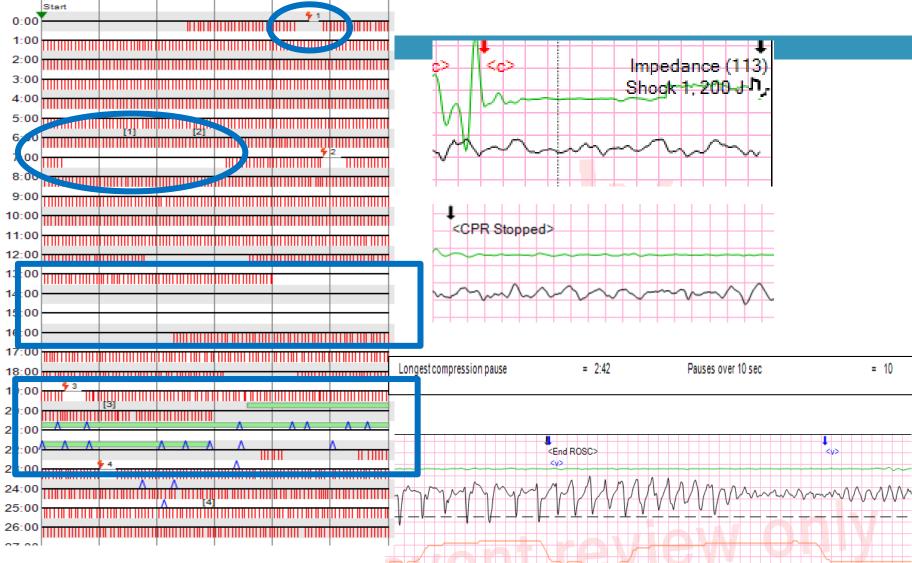
Source: https://news.ohsu.edu/2018/05/16/ems-providers-could-save-an-additional-10-000-lives-a-year-using-newer-breathing-tube

Limitations to the study:

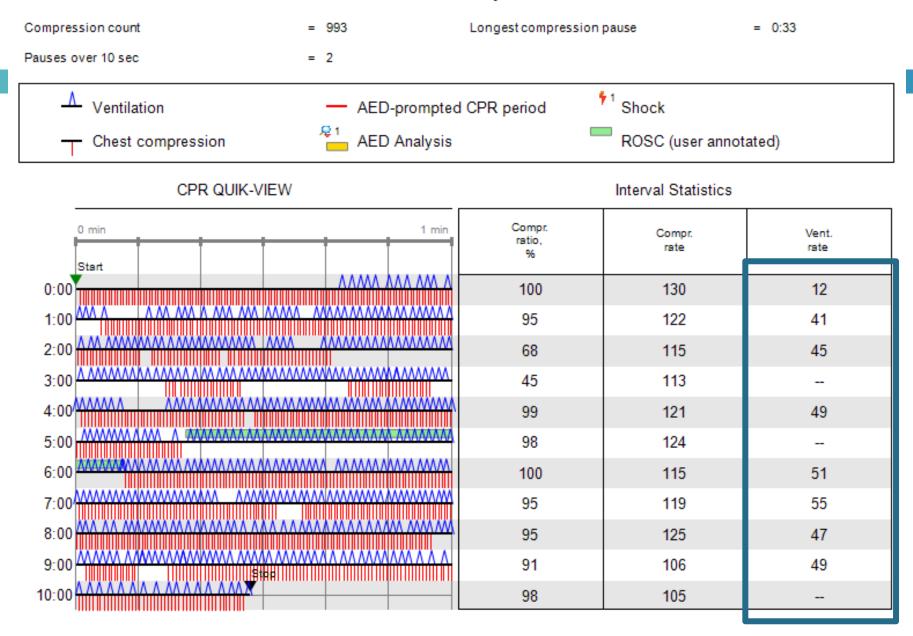
- No way to blind the assignment
- CPR quality/ventilations not measured
- No additional training for airway placement
 - Evaluated under existing protocols
- Results may not apply in the hospital setting, but...

Should we put an emphasis on intubation in the first 15 minutes?

Figure 2. Forest Plot of Subgroup Analyses of Survival to Hospital Discharge in the Propensity-Matched Cohort


	Survival to Hospital Dis Patients With Outcome	scharge, No. of :/Total Patients (%)	Risk Ratio
Subgroup	Intubation	No Intubation	(95% CI)
initial rhythm			
Shockable	1786/6675 (26.8)	2608/6646 (39.2)	0.68 (0.65-0.72)
Nonshockable	5266/36639 (14.4)	5799/36668 (15.8)	0.91 (0.88-0.94)
Time of matching, min ^a			
0-4	4321/25219(17.1)	5098/25219 (20.2)	0.85 (0.82-0.88)
5-9	2248/14937 (15.0)	2693/14937 (18.0)	0.84 (0.79-0.88)
10-15	483/3158 (15.3)	616/3158 (19.5)	0.78 (0.70-0.87)
llness category			
Medical cardiac	2697/15716 (17.2)	3710/15779 (23.5)	0.73 (0.70-0.77)
Medical noncardiac	2695/20017 (13.5)	2834/19979 (14.2)	0.95 (0.91-1.00)
Surgical cardiac	632/2197 (28.8)	747/2274 (32.8)	0.88 (0.80-0.96)
Surgical noncardiac	910/4708 (19.3)	984/4623 (21.3)	0.91 (0.84-0.98)
Trauma	118/676 (17.5)	132/659 (20.0)	0.87 (0.79-1.09)
Respiratory insufficiency ^b			
Yes	2546/14845 (17.2)	2630/14822 (17.7)	0.97 (0.92-1.02)
No	4506/28469 (15.8)	5777/28492 (20.3)	0.78 (0.75-0.81)
ocation			
Emergency department	914/4546 (20.1)	1131/4422 (25.6)	0.79 (0.73-0.85)
Floor with telemetry	1570/9373 (16.8)	1987/9342 (21.3)	0.79 (0.74-0.83)
Floor without telemetry	1432/12331 (11.6)	1684/12263 (13.7)	0.85 (0.79-0.90)
Intensive care unit	2161/13384 (16.1)	2406/13556 (17.7)	0.91 (0.86-0.97)
Operating room, postanesthesia care unit, or interventional unit	758/2550 (29.7)	903/2585 (34.9)	0.85 (0.79-0.92)
Other	217/1130 (19.2)	296/1146 (25.8)	0.74 (0.63-0.88)
Overall	7052/43314 (16.3)	8407/43314 (19.4)	0.84 (0.81-0.87)

Favors NO intubation


Favors intubation

Andersen et al (2017) JAMA; 317:5

60 minute case.....Minutes 1 - 26

Summary

AVOID excessive ventilation!!!

"Hyperventilation Kills"

-ECCU Conference 2015

DOES EPI MAKE YOU PEPPY?!

Is Epinephrine beneficial or does it cause harm?

- Current recommendation: 1 mg Q 3 5 min
- RCT Epi vs. Placebo
- Warwick University
- UK & Wales
- Enrollment started Sept 2014
- 8,000 subjects
- Out-of-Hospital Cardiac Arrest

Why are we questioning Epi?

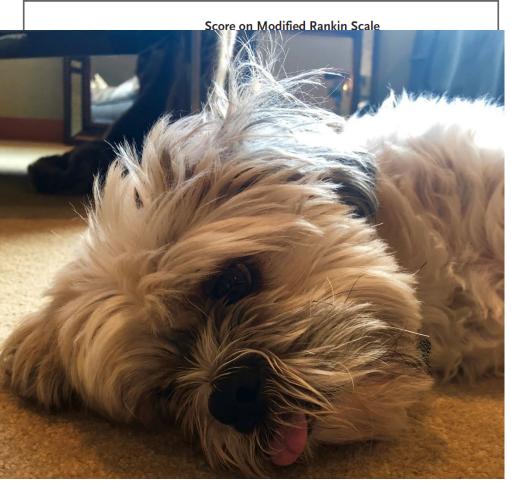
*Epi associated with worse neurologic outcomes Over 500,000 patients!!!!

- Dumas et al (2014) J Amer College of Card*
- Olasveengen et al (2012) Resuscitation*
- Hagihara et al (2012) JAMA*
- □ Jacobs et al (2011) Resuscitation*
- Olasveengen et al (2009) JAMA*
- Ong et al (2007) Ann Emerg Med*
- □ Gueugniaud et al (1998) NEJM
- □ Herlitz et al (1995) Resuscitation*
- Paradis et al (1991) JAMA

Does Epi make you peppy?

Perkins NEJM (2018)

Table 1. Characteristics of the Patients at Baseline.*		
Characteristic	Epinephrine (N=4015)	Placebo (N = 3999)
Mean age ±SD — yr	69.7±16.6	69.8±16.4
Sex — no. (%)		
Male	2609 (65.0)	2584 (64.6)
Female	1406 (35.0)	1415 (35.4)
Initial cardiac rhythm — no. (%)		
Shockable	770 (19.2)	748 (18.7)
Ventricular fibrillation	716 (17.8)	684 (17.1)
Pulseless ventricular tachycardia	25 (0.6)	20 (0.5)
Not otherwise identified with AED	29 (0.7)	44 (1.1)
Nonshockable	3149 (78.4)	3181 (79.5)
Asystole	2135 (53.2)	2194 (54.9)
Pulseless electrical activity	955 (23.8)	937 (23.4)
Bradycardia	20 (0.5)	16 (0.4)
Not otherwise identified with AED	39 (1.0)	34 (0.9)


30 day Survival:

~59% received bystander CPR Overall survival 3.2% in Epi group, 2.4% in placebo; p = 0.02

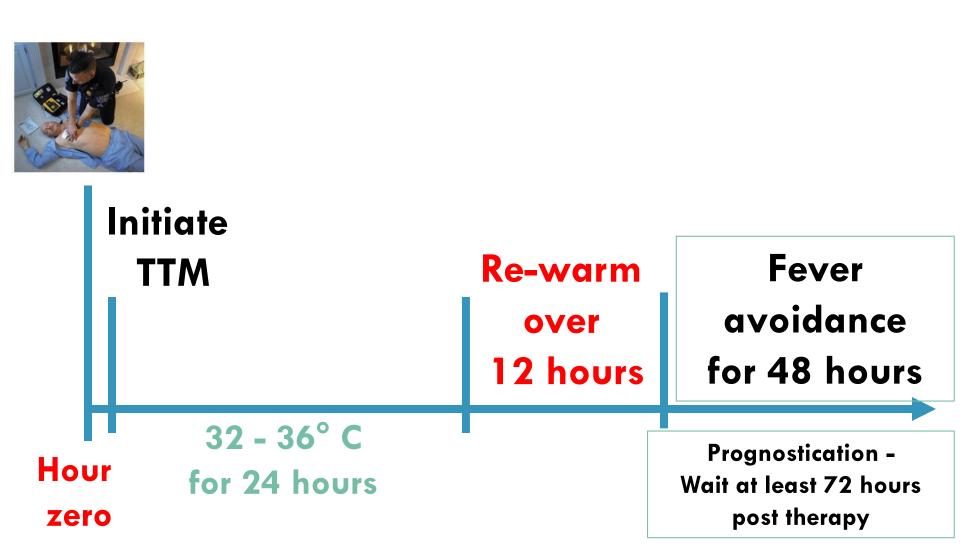
(unadjusted odds ratio for survival, 1.39;

95% confidence interval [CI], 1.06 to 1.82;) Perkins NEJM (2018)

Survival & Neuro Outcomes

Survival to discharge with favorable neuro outcome:

- Mod Rankin ≤ 3
- 87/4007 (2.2%) Epi group
- 74/3994 (1.9%) placebo group
- *NO statistical difference in the proportion of patients who survived until hospital discharge with a favorable neurologic outcome
- unadjusted odds ratio, 1.18; 95% Cl, 0.86 to 1.61).


Severe neurologic outcome:

Mod Rankin 4 or 5
 39/126 (31%) Epi group
 16/90 (17.8%) placebo group

Perkins NEJM (2018)

POST-ARREST CARE

Post cardiac arrest timeline:

Do we need more answers?

Changes in Temperature Management of Cardiac Arrest Patients Following Publication of the Target Temperature Management Trial

Ryan Salter, FANZCA¹; Michael Bailey, PhD^{2–4}; Rinaldo Bellomo, MD^{2,3,5}; Glenn Eastwood, PhD^{2,5}; Andrew Goodwin, BEng (Env)⁶; Niklas Nielsen, PhD^{7,8}; David Pilcher, FCICM^{2,9,10}; Alistair Nichol, PhD^{2,9,11}; Manoj Saxena, PhD^{12–14}; Yahya Shehabi, PhD^{4,15}; Paul Young, PhD^{1,16}; on behalf of the Australian and New Zealand Intensive Care Society Centre for Outcome and Resource Evaluation (ANZICS-CORE)

More fever observed?

TABLE 2. Temperature Data and Clinical Outcomes

Characteristics	Pre-TTM Trial Cohort*, n = 4,450	Post-TTM Trial Cohort ^b , n = 5,184	Point Estimate (99% Cl)	p	
Temperature variables					
Lowest temperature in first 24 hr in ICU, °C, mean (sp)	33.77 (1.71)	34.90 (1.39)	0.98 (0.89–1.06)	< 0.001	
Highest temperature in first 24 hr in ICU, °C, mean (sp)	36.38 (1.61)	37.03 (1.26)	0.65 (0.57–0.73)	< 0.001	
Difference between the highest and lowest temperature in first 24 hr in ICU, °C, mean (sp)	2.69 (1.71)	2.32 (1.46)	-0.38 (-0.46 to -0.29)	< 0.001	
Average of highest and lowest temperature in the first 24 hr in ICU, °C, mean (99% CI)	35.1 (35.1–35.2)	35.9 (35.9–35.9)	0.8 (0.7–0.9)	< 0.001	
Percentage of patients with a lowest temperature < 34°C in the first 24 hr in ICL % (99% CI)	57.1 (55.1–59.1)	24.8 (23.2–26.4)	-32.3 (-34.9 to -29.7)	< 0.001	
Proportion with fever (highest temperature > 38°C), <i>n</i> (%)	568 (12.8)	853 (16.5)	1.35 (1.16–1.56)	< 0.001	
Unadjusted	2,331 (52.4)	2,769 (53.4)	1.04 (0.94–1.16)	0.31	
Adjusted for ANZ ROD	Not applicable	Not applicable	1.27 (1.13–1.43)	< 0.001	
Adjusted for ANZ ROD, temperature removed ^c	Not applicable	Not applicable	1.06 (0.95–1.20)	0.17	
Adjusted for ANZ ROD, temperature affected removed ^d	Not applicable	Not applicable	1.06 (0.95–1.19)	0.18	
ICU length of stay, d, geometric mean (99% CI)					
Overall	2.94 (2.82–3.07)	2.75 (2.64–2.85)	0.93 (0.88–0.99)	0.002	
Survivors	4.27 (4.07-4.47)	3.85 (3.68–4.02)	0.90 (0.85–0.96)	< 0.001	
Nonsurvivors	1.91 (1.79–2.04)	1.90 (1.79–2.01)	0.99 (0.91–1.08)	0.80	
Hospital length of stay, d, geometric mean (99% CI)					
Overall	5.29 (5.03–5.57)	5.16 (4.93–5.41)	0.98 (0.91–1.05)	0.36	
Survivors only	12.20 (11.63–12.80)	11.92 (11.51–12.34)	0.98 (0.91–1.04)	0.36	
Nonsurvivors only	2.30 (2.16–2.45)	2.48 (2.35–2.62)	1.08 (0.99–1.17)	0.02	

Salter et al (2018) Critical Care Medicine

Adjusted mortality rates increasing?

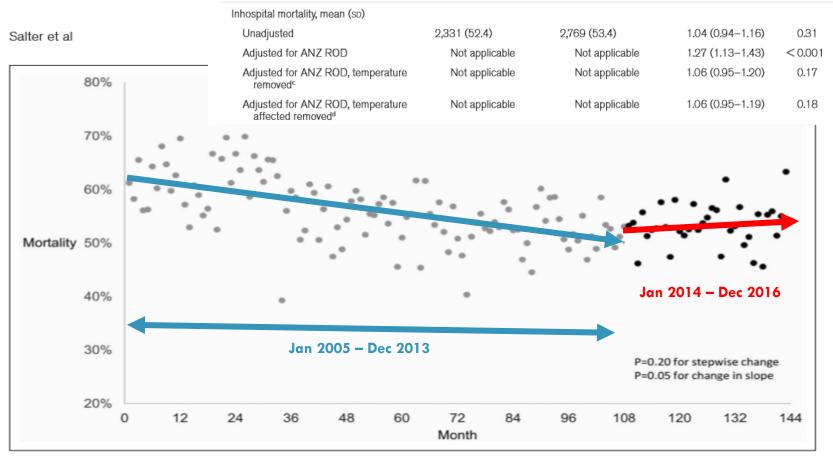
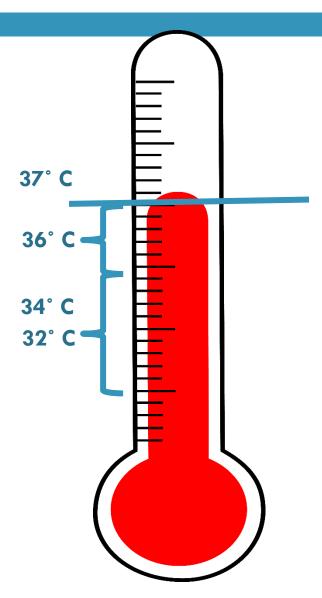


Figure 3. Inhospital mortality by month. The *gray dots* are for the months from January 2005 until December 2013 inclusive; the *black dots* are for the months from January 2014 until December 2016 inclusive. The targeted temperature management study was published online on November 17, 2013, and was published in print on December 5, 2013.

What's happening now?

TTM-2	2 Trial				
33°C vs.	37.8°C				
NIH) U.S. National Library of Medicine Find Stud	lies ▼ About Studies ▼ Submit Studies ▼ Resources ▼ About Site ▼				
Home > Search Results > Study Record Detail	□ Save this study				
Trial record 1 of 1 for: ttm2 trial					
Previous Study <u>Return to List</u> Next Study Targeted Hypothermia Versus Targeted Normothermia After Out-of-hospital Cardiac Arrest (TTM-2)					
The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our <u>disclaimer</u> for details.	ClinicalTrials.gov Identifier: NCT02908308 Recruitment Status ①: Recruiting First Posted ①: September 20, 2016 Last Update Posted ①: November 21, 2017 See Contacts and Locations				


1900 patients – estimated completion December 2021

Clinical assessment:

Does mild hypothermia (32 - 34°C) reduce mortality & improve neurologic outcomes post cardiac arrest?

□ **YES!!!!**

- Does 36° C have the same benefit?
 YES, but...
- Does "normothermia" have the same benefit?
- We don't know!!!
- Is fever bad post-cardiac arrest?
- Very Likely!!!!

ONGOING TRIALS

When is CPR challenging?

- Prolonged codes
- Cardiac Cath Lab
- In a hospital bed
- When you don't have enough staff/limited resources
- On a morbidly obese patient
- Back of a moving ambulance

Should we rethink the way we provide chest compressions?

Mechanical CPR Devices

Ongoing Trials?

STUDY PROTOCOL

Open Access

CrossMark

Mechanical versus manual chest compressions in the treatment of inhospital cardiac arrest patients in a nonshockable rhythm: a randomised controlled feasibility trial (COMPRESS-RCT)

Keith Couper^{1,2*}, Tom Quinn³, Ranjit Lall¹, Anne Devrell⁴, Barry Orriss⁴, Kate Seers⁵, Joyce Yeung^{1,2}, Gavin D. Perkins^{1,2} On behalf of the COMPRESS-RCT collaborators

 Multi-center parallel group feasibility randomized controlled trial

Compare mechanical chest compressions vs. manual chest compressions on 30day survival following **in-hospital** cardiac arrest

LUCAS vs. Manual CC

- 330 adult patients who sustain an in-hospital cardiac arrest in a non-shockable rhythm
- Over approximately 2 years
- Randomized in a 3:1 ratio to receive ongoing treatment with a mechanical chest compression device (LUCAS 2/3) or continued manual chest compressions
- \square 24/7 recruitment by the clinical cardiac arrest team
- Deferred consent, with consent for follow-up sought from patients or their LNOK in those that survive
- Embedded qualitative study, conduct semi-structured interviews with hospital staff to explore facilitators and barriers to study recruitment

Bottom line...

- Team dynamics matter!
- Mock codes can assist in assessing system response
- Maybe we don't need to place advanced airways intra-arrest?
 - If you do, stay on the chest!
- We still don't know if Epi makes us peppy or leads to worse neurologic outcomes!
- □ If your TTM target is 36° C, evaluate your data!

Stay in Touch!

nkupchik@gmail.com www.nicolekupchikconsulting.com

Nicole Kupchik Consulting & Education

@nicolekupchik

YouTube Nicole Kupchik

Podcast: Resus10 (iTunes & Stitcher)