CUTTING EDGE TREATMENTS FOR VENTRICULAR FIBRILLATION: E-CPR

TREATING A CAUSE OR A SYMPTOM?

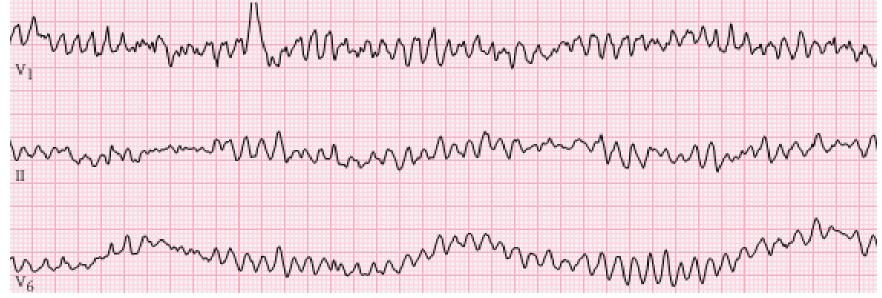
Nicole Kupchik MN, RN, CCNS, CCRN-K, PCCN-CMC

Objectives

 Discuss the concepts of e-CPR for recurrent ventricular fibrillation cardiac arrest

Discuss optimal candidates for e-CPR

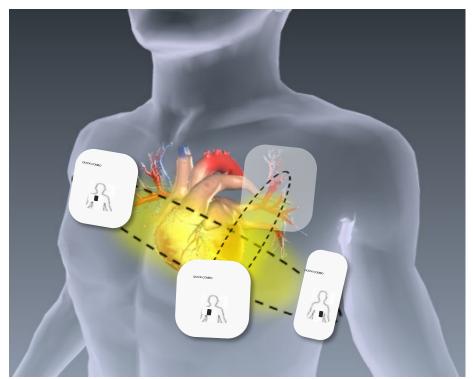
Describe the evidence for mechanical CPR


A 54 year old patient in vfib...

Shocked 4 times - Defibrillating every 2 minutes — repeating 360 joules

EtCO₂ remains in the high 20s to 30s

Ongoing chest compressions


Airway placed

Now what?!

Other defibrillation ideas?

- Reposition the pads
- Change the vector (or direction) the energy is delivered

OK, so now what?

Why do people experience ventricular fibrillation?

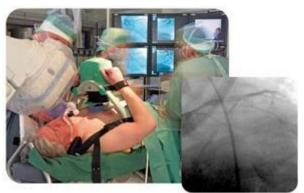
- Long QT interval
- Drugs (cocaine)
- Hypertrophic Obstructive Cardiomyopathy
- Lesion in a coronary artery! REVERSIBLE!!!

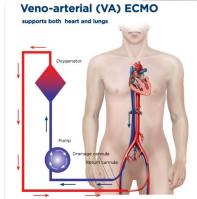
Should the patient go to the cath lab?

What is E-CPR?

Extracorporeal Cardiopulmonary Resuscitation:

Mechanical Chest Compression device




Percutaneous Coronary Intervention

□ ECMO

Extracorporeal Membrane Oxygenation

Should the patient go to the cath lab?

- Get a 12 Lead ECG post arrest
 - Class I, LOE B
- PCI should be performed emergently in OHCA with STEMI
 - □ Class I, LOE B-NR
- Reasonable to performPCI regardless of awake or comatose
 - □ Class IIa, C-LD

- □ Case series
 - PCI was needed in 95% of all post arrest patients with STEMI
 - PCI was needed in 58% of patients post arrest who didn't have ST elevation!
 - Dumas et al (2010) Circ Cardiovasc Interv.;3:200–207

CENTRAL ILLUSTRATION Algorithm for Risk Stratification of Comatose Cardiac Arrest Patients

Out-of-hospital cardiac arrest (OHCA) patients who have achieved return of spontaneous circulation (ROSC), but remain comatose Within 10 minutes of hospital arrival: Perform 12-lead electrocardiography (ECG) to identify patients who benefit from emergent angiography Induce targeted temperature management (TTM) with mild therapeutic hypothermia (TH) to limit tissue injury following cardiac arrest ST-segment elevation on the ECG No ST-segment elevation on the ECG Activate ST-segment elevation myocardial infarction (STEMI) team "ACT" Consider survival benefit/risk ratio. Assess for unfavorable resuscitation features especially if multiple unfavorable resuscitation features are present Consult with interventional cardiology & intensive care services Transport to cardiac catheterization laboratory (CCL) (once a decision is made to proceed with coronary angiography) Patients deemed suitable Patients with multiple unfavorable resuscitation features Patients deemed suitable Unwitnessed arrest pH <7.2 **Emergency** angiography Early angiography · Initial rhythm: Non-VF Lactate >7 Define coronary anatomy Define coronary anatomy No bystander CPR Age >85 Identify coronary lesion Identify coronary lesion · End stage renal disease >30 min to ROSC · Noncardiac causes (e.g.,traumatic arrest) Percutaneous coronary Percutaneous coronary Ongoing CPR intervention (PCI) intervention (PCI) Left ventricular (LV) function Left ventricular (LV) function and hemodynamic assessment and hemodynamic assessment Patients are less likely to benefit from coronary intervention Provide mechanical LV Individualized patient care and interventional cardiology Provide mechanical LV support if needed support if needed consultation are strongly recommended Arrest in the Cath Lab

When is CPR challenging?

- Prolonged codes
- Back of a moving ambulance
- Cardiac Cath Lab
- In a hospital bed
- When you don't have enough staff/limited resources
- On a morbidly obese patient

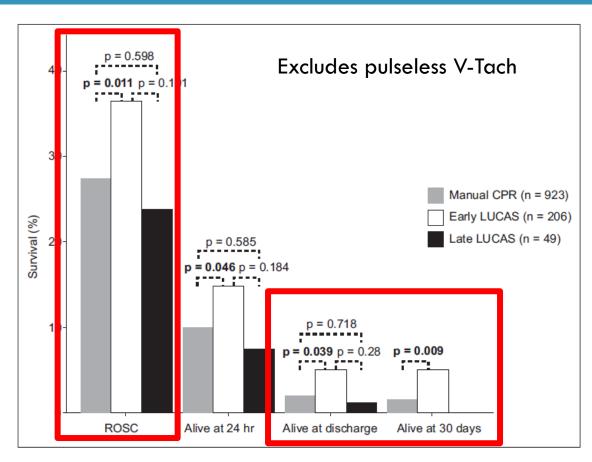
Should we rethink the way we provide chest compressions?

Table 2. Primary and Secondary Outcomes

Outcomes	Mechanical CPR	Manual CPR (n = 1289)	D Value	Treatment Difference, %
4-Hour survival ^a	307 (23.6)	305 (23.7)	>.99	-0.05 (-3.3 to 3.2)
ROSC ^b	460 (35.4)	446 (34.6)	.68	0.78 (-2.9 to 4.5)
Aminal at omer geney department	366 (20.2)	257 (27.7)	.00	0.46 (3.0 to 3.0)
with patpable pulse				
Survival to discharge from ICU with CPC 1-2 ^c	98 (7.5)	82 (6.4)	.25	1.18 (-0.8 to 3.1)
Survival to hospital discharge with CPC 1-2 ^c	108 (8.3)	100 (7.8)	.61	0.55 (-1.5 to 2.6)
1-Month survival with CPC 1-2 ^d	105 (8.1)	94 (7.3)	.46	0.78 (-1.3 to 2.8)
6-Month survival with CPC 1-2 ^d	110 (8.5)	98 (7.6)	.43	0.86 (-1.2 to 3.0)
Survival to discharge from ICU ^e	158 (12.2)	153 (11.9)	.86	0.28 (-2.2 to 2.8)
With CPC 1	54(4.2)	34(2.6)	.04	1.52 (0.1 to 2.9)
With CPC 2	44 (3.4)	48 (3.7)		
With CPC 3	34 (2.6)	40 (3.1)		
With CPC 4	26 (2.0)	29 (2.2)		
Survival to discharge from hospitale	117 (9.0)	118 (9.2)	.89	-0.15 (-2.4 to 2.1)
With CPC 1	89 (6.8)	67 (5.2)	.08	1.65 (-0.2 to 3.5)
With CPC 2	19 (1.5)	33 (2.6)		
With CPC 3	9 (0.7)	15 (1.2)		
With CPC 4	0	1 (0.1)		
1-Month survival ^f	112 (8.6)	109 (8.5)	.89	0.16 (-2.0 to 2.3)
With CPC 1	92 (7.1)	74 (5.7)	.17	1.34 (-0.6 to 3.2)
With CPC 2	13 (1.0)	20 (1.6)		
With CPC 3	7 (0.5)	13 (1.0)		
With CPC 4	0	1 (0.1)		
6-Month survival ^g	111 (8.5)	1048.1)	.67	0.47 (-1.7 to 2.6)
With CPC 1	103 (7.9)	88 (6.8)	.29	1.10 (-0.9 to 3.1)
With CPC 2	7 (0.5)	10 (0.8)		
With CPC 3	1 (0.1)	6 (0.5)		
With CPC 4	0	0		

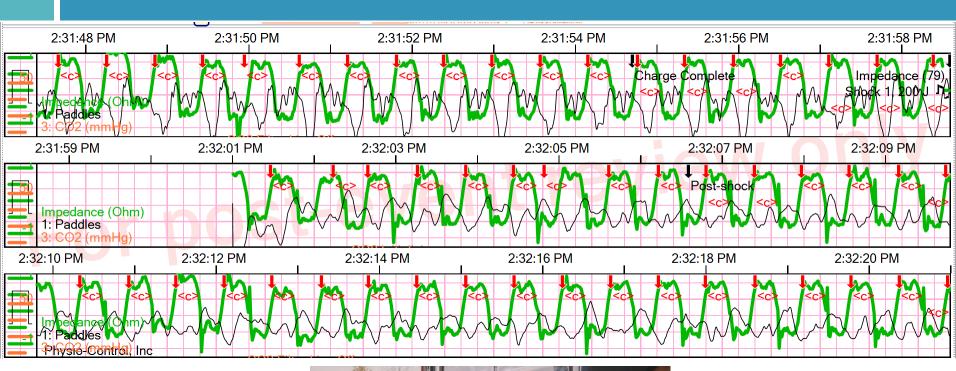
nical CPR

P patients

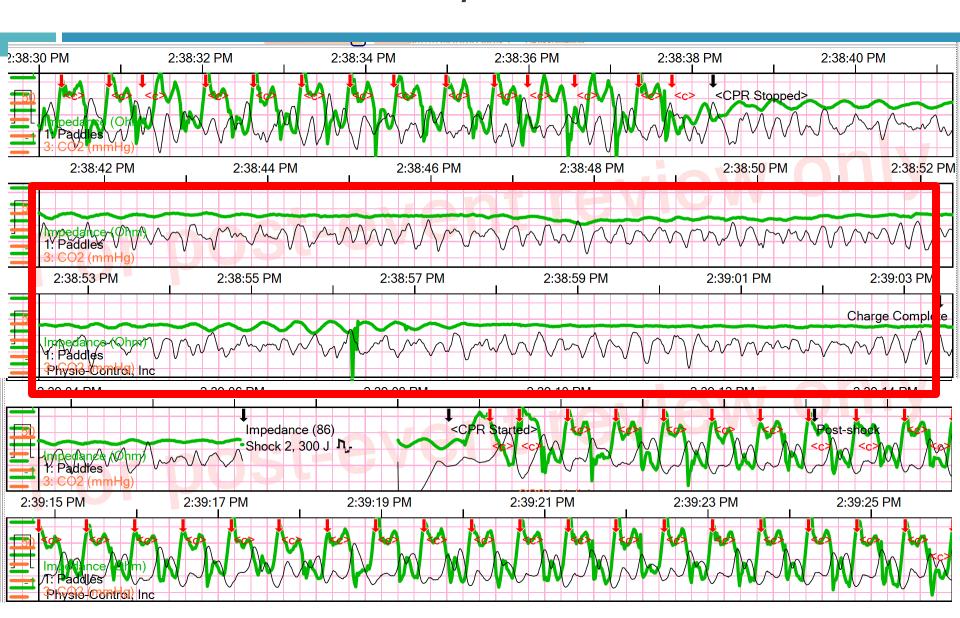

redish, 1 Dutch, 1
h EMS system
s n = 1300

ual CPR n = 1289

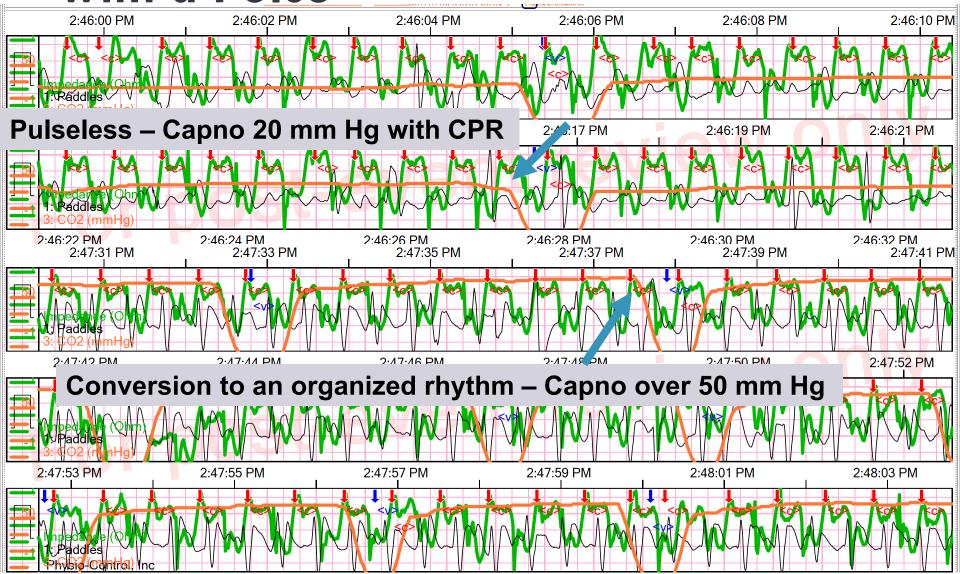
ur survival
w up 6 months


Does Mechanical CPR applied early make a difference?

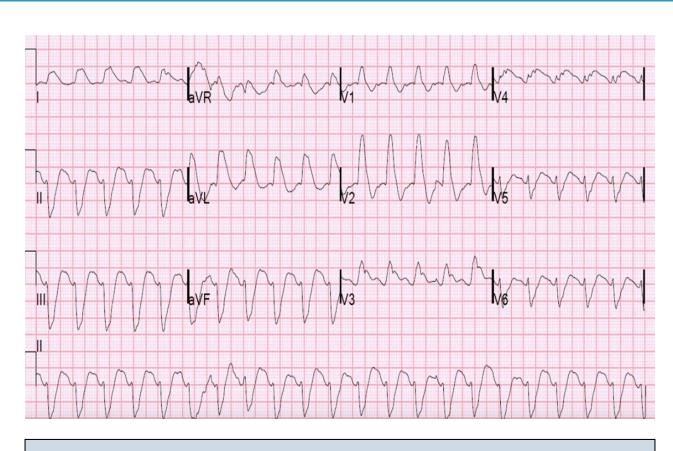
- □ Seems to!
- RCT Lucas 2 vs.manual CC
- Lucas applied onsite vs. ambulance


MECCA Trial – <u>**ME**</u>chanical <u>**C**</u>ardiopulmonary Resuscitation vs. Standard Manual <u>**C**</u>PR in OHCA by Emergency <u>**A**</u>mbulance Crew

Mechanical CPR with a Shock - #1



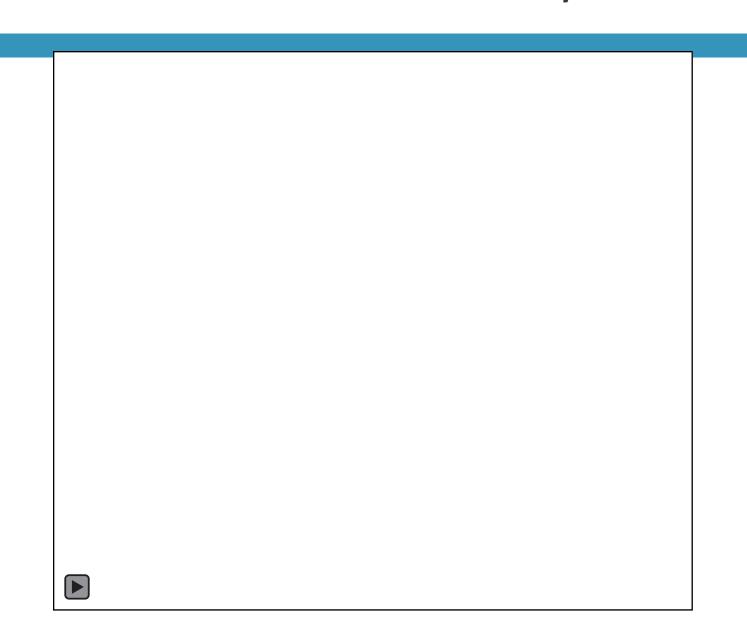
Pre-Shock Pause w/ Mechanical CPR-#2

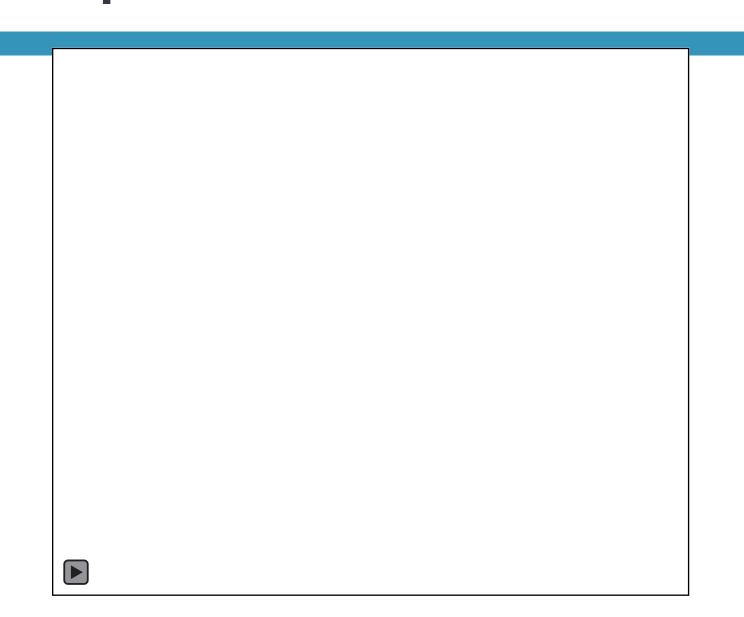


mCPR & Capnography without, then with a Pulse

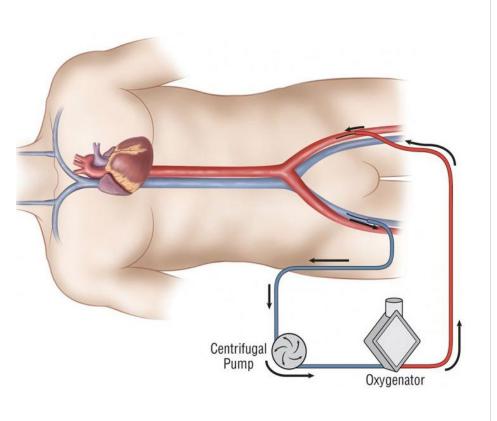
56 year old with OHCA

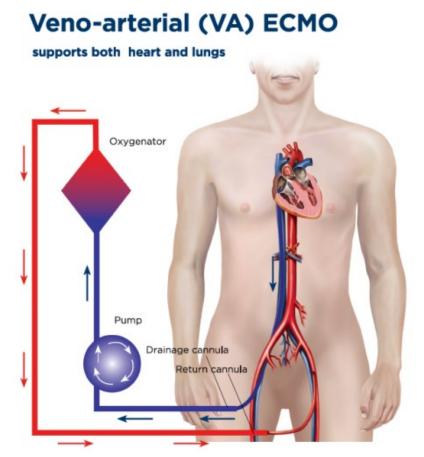

- TransientROSC
- 4 mg of Epi,but continuesloss of pulse
- Unclear if STEs on ECG
- What to do next?

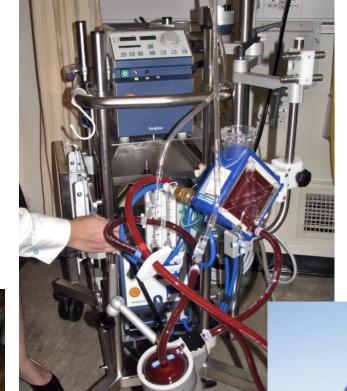

Would anyone take this patient to the cath lab?


Mechanical Chest Compression Devices

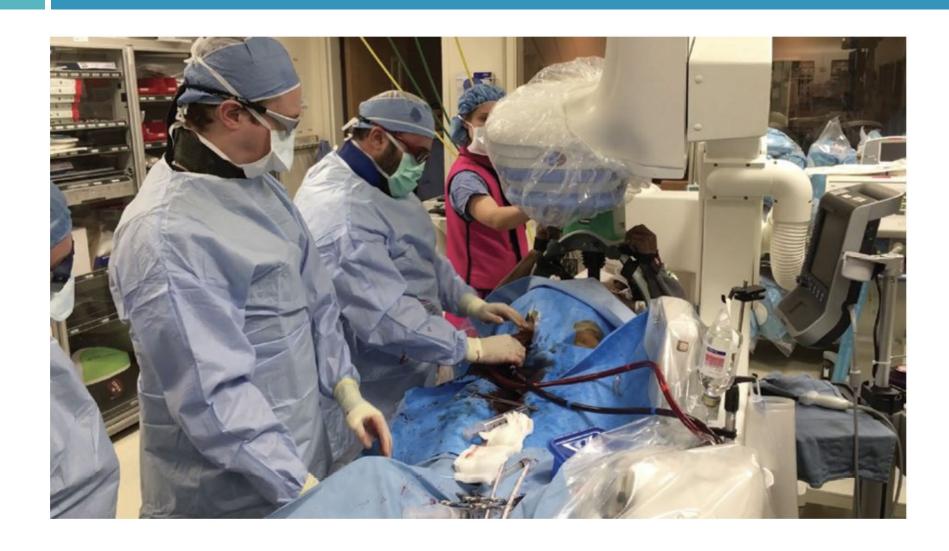
Case continued...OHCA, RBBB

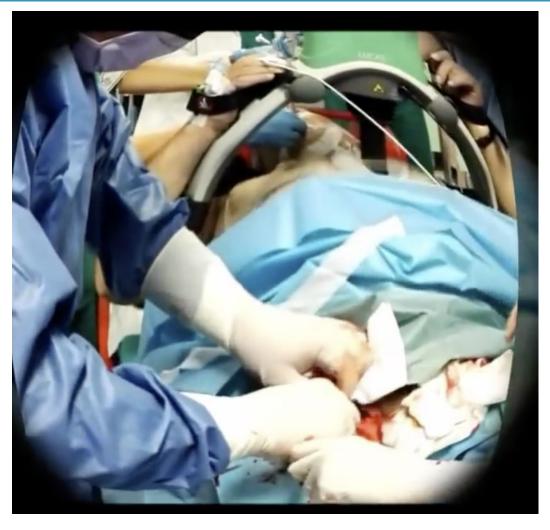



Stent placed to the LAD



ECMO





E-CPR/ECMO Cannulation for Cardiac Arrest

ECMO Cannulation for e-CPR

Credit: University of Pennsylvania

https://www.youtube.com/watch?v=UK0yBWypCrg

Resuscitation

journal homepage: www.elsevier.com/locate/resuscitation

Clinical Paper

Refractory cardiac arrest treated with mechanical CPR, hypothermia, ECMO and early reperfusion (the CHEER trial)*

D' C' lefa C' L D Libde W' (Dill ' a W C ' Libde

Table 3: Results with new "scoop and treat on the way" approach for refractory out-of-hospital v fib cardiac arrest20,23

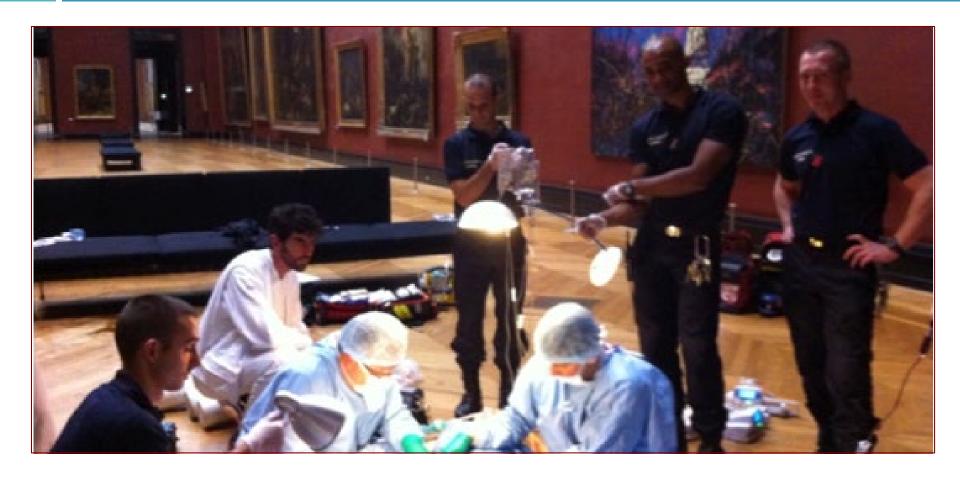
	The CHEER trial	Minnesota Research Consortium	Summary
Number of patients	11	62	73
Survival to discharge	5 (45%)	28 (45%)	33 (45%)
Favorable neurology among survivors	5 (100%)	26 (93%)	31 (94%)

Minnesota Resuscitation Consortium's Advanced Perfusion and Reperfusion Cardiac Life Support Strategy for Out-of-Hospital Refractory Ventricular Fibrillation

Demetris Yannopoulos, Jason A. Bartos, Cindy Martin, Ganesh Raveendran, Emil Missov, Marc Conterato, R. J. Frascone, Alexander Trembley, Kevin Sipprell, Ranjit John, Stephen George, Kathleen Carlson, Melissa E. Brunsvold, Santiago Garcia, Tom P. Aufderheide

The Paris experience

Safety and feasibility of prehospital extra corporeal life support implementation by non-surgeons for out-of-hospital refractory cardiac arrest*

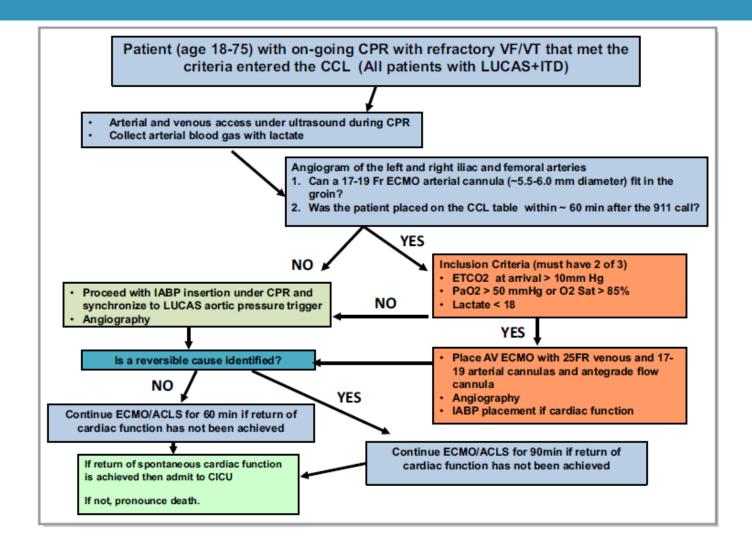

Lionel Lamhaut a,b,*, Romain Jouffroy a, Michaela Soldan a, Pascal Phillipe a, Thibaut Deluze a, Murielle Jaffry a, Christelle Dagron a, Benoit Vivien a, Christian Spaulding b,c, Kim An a, Pierre Carli a,b

D.A.R. and SAMU de Paris, Hôpital Necker, Assistance Publique Hôpitaux de Paris, Paris Descartes University, Paris, France

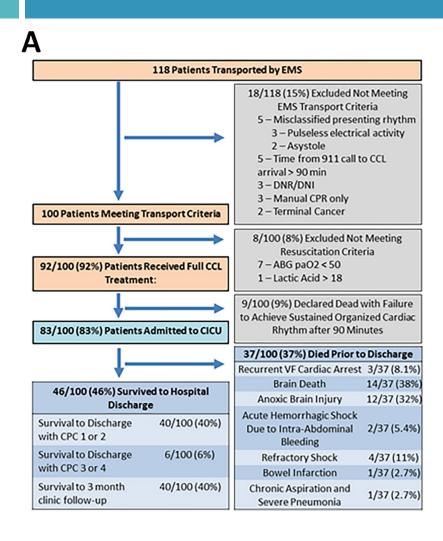
b Inserm UMR-S970, Paris Cardiovascular Research Centre, Paris Descartes University, Paris, France

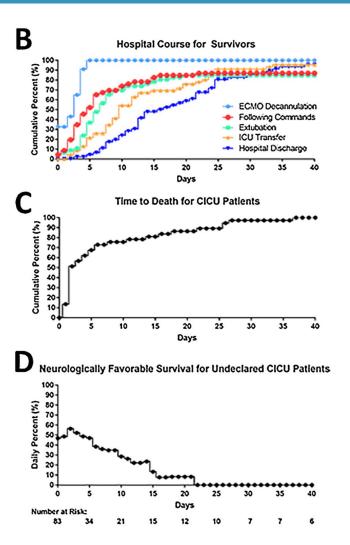
c Cardiology Department, Hôpital Européen Georges Pompidou, Assistance Publique, Hôpitaux de Paris, Paris Descartes University, Paris, France

Mechanical CPR as a bridge? The "Art" of E-CPR!

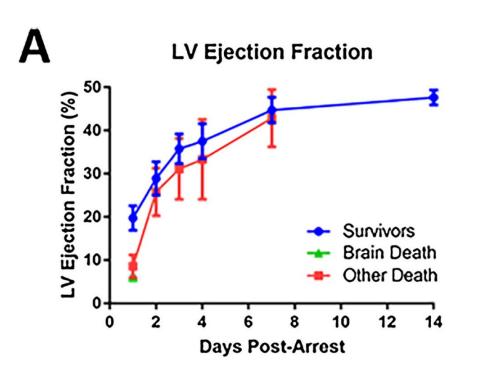


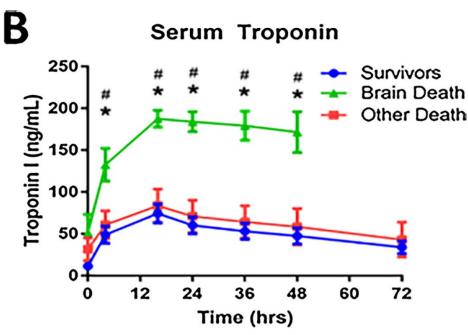
Pre-hospital E-CPR in the Louvre Museum, Paris


ECMO comes to you?



Minnesota experience with eCPR




2018 E-CPR Data from Minnesota

2018 data from Minnesota

Best chance of survival?

Refractory VF/VT Patients	Survivors With CPC 1&2 (9)	Deaths and Survivors With CPC >2 (9)	P Value
Age, y	57±11	56±9	0.2
911 call to first response arrival	3.8±2.5 min	8±3 min	0.004*
Bystander CPR	8/9	4/9	0.13
911 call to CCL entry	54±7.6	66±10.5	0.019
CCL entry—on ECMO	6±2	5.4±4	0.2
ETCO ₂ on arrival	32±12	35±8	0.5
pH on ECMO opening ABG	7.05±0.1	7.07±0.3	0.4
Lactate at CCL arrival	9.9±2.8	14.6±5.5	0.041*
Presence of CAD	9/9	4/9	0.029*
Witnessed arrest	5/9	6/9	0.6
Intermittent ROSC before ECMO	6/9	1/9	0.049*

- Rapid EMS response time
- Bystander CPR
- Evidence of coronary disease

2015 ILCOR/AHA Mechanical Devices

Recommendation	Class	LOE
Using feedback devices to guide compression quality	Ilb	B-R
The use of mechanical compression devices may be a reasonable for use by properly trained personnel.		
The use of mechanical compression devices may be considered in specific settings where the delivery of high quality manual compressions may be challenging or dangerous to the provider.		C-EO
ECPR – Venous/Arterial ECMO may be considered for refractory cardiac arrest when the cause is likely reversible	llb	C-LD

Vfib arrest is survivable!

Stay in touch!

nkupchik@gmail.com www.nicolekupchikconsulting.com

Nicole Kupchik Consulting & Education

@nicolekupchik

VouTube Nicole Kupchik

Podcast: Resus 10 (iTunes & Stitcher)