

stryker

Ortholoc™ 2 with 3Di Technology

LapiFuse™ Triplanar
Correction System

Operative technique

Ortholoc 2 with 3Di Technology

LapiFuse Triplanar Correction System

Table of contents

Introduction	5
• Implant description	5
• Instrument description	6
• Indications	7
• Contraindications	7
Operative technique	8
• Explant information	16
• Postoperative management	16
Ordering information	17

Surgeon design team

The Ortholoc 2 LapiFuse Triplanar Correction System was developed in conjunction with:

Bruce Cohen, MD
OrthoCarolina
Charlotte, NC

W. Hodges Davis, MD
OrthoCarolina
Charlotte, NC

Jeremy McCormick, MD
Washington University Orthopedics
St. Louis, MO

Jesse Doty, MD
UT Erlanger Orthopedics
Chattanooga, TN

Christopher Hyer, DPM
Orthopedic Foot and Ankle Center
Columbus, OH

Introduction

Implant description

The Ortholoc 2 LapiFuse Triplanar Correction System is designed to correct hallux valgus deformity as a result of laxity and hypermobility of the first ray at the first tarsometatarsal joint. The instrumented and reproducible technique focuses on addressing the deformity through (1) joint preparation without corrective osteotomies, (2) alignment through triplanar correction, and (3) rigid, multi-cortical fixation with screws across the cuneiforms and first – second metatarsals. The surgical objective intends to correct the source of the deformity to decrease hallux valgus reoccurrence.

Screw plates

The Ortholoc 2 LapiFuse Plates are available in 2 configurations: Standard (5-hole) 0mm and 2mm step and trans-metatarsal (6-hole) 0mm and 2mm step. Both available in right and left. The low profile, anatomically contoured plates are designed for rigid dorso-medial fixation across the first TMT joint.

All plates have two locking holes for proximal fixation and two locking holes for distal fixation. In addition, all plates have a compression slot. The 6-hole plates have an optional second metatarsal locking hole for additional stability. The plantar stepped plates have a smooth dorsal transition to preserve the medial cuneiform and prevent soft tissue irritation.

The Ortholoc 2 LapiFuse Plates are manufactured from titanium alloy and are Type II anodized for improved fatigue strength.* The plates are compatible with Ortholoc 3Di 2.7/3.5mm locking and non-locking screws.

Locking and non-locking screws

Ortholoc 2 LapiFuse System includes 3.5mm locking and non-locking screw lengths ranging from 12mm to 40mm in 2mm increments. The screws are manufactured from titanium alloy and are color anodized for surgical efficiency. The locking screws can be assembled on-axis or up to 15° off axis. The non-locking screw have a low profile head. All screws feature a cortical thread profile for improved fixation.

Interfragmentary (cross) screws

The maxtorque self-tapping, self-drilling cannulated screws are available in a single 4mm diameter with screw lengths ranging from 35mm to 45mm in 2.5mm increments. The screws are manufactured from titanium alloy and are color anodized.

Standard

0mm

Trans-metatarsal

0mm

2mm

2mm

Introduction (cont.)

Instrument description

The Ortholoc 2 LapiFuse Instrumentation gives the surgeon the confidence to correct the hallux valgus deformity with maximum operational efficiency. Procedure specific instrumentation embodies several features that eliminates surgical steps, allows for intra-operative guidance, and measured correction.

Joint preparation instruments

Shortening of the first ray and overloading the lesser metatarsals can be avoided by forgoing joint resection of the first TMT joint. Instead, the utilization of surgical tools for cartilage removal and exposure to the subchondral bone is recommended. The Ortholoc 2 LapiFuse Joint Preparation Kit (sterile) provides sharp, single use osteotome, curette, and 25mm drill with drill guide for first TMT joint preparation.

LapiFuse clamp

Triplanar alignment, stabilization, and anatomic correction of the medial column is achieved through an instrumented clamp at the head of the metatarsal. The Ortholoc 2 LapiFuse Clamp allows for passive and active de-rotation of the hallux in the frontal plane while the ratcheting feature allows active reduction of the intermetatarsal angle in the transverse plane. The inherent offset between the base and the hook of the clamp preserves the alignment of the first and second metatarsal in sagittal plane throughout the correction.

LapiFuse Targeting Guide

The LapiFuse Targeting Guide utilizes fluoroscopic feedback for visualization of the interfragmentary screw placement across the arthrodesis. Fluoroscopic feedback allow for the precise targeting of the multi-cortical compression screw into the center of the intermediate cuneiform for best bone purchase.

Indications

The Ortholoc 2 LapiFuse System is intended for use in stabilization and fixation of fresh fractures, revision procedures, joint fusion, and reconstruction of bones of the feet and toes. Specific examples include: arthrodesis of the first metatarsal-cuneiform joint (lapidus fusion).

Contraindications

The Ortholoc 2 LapiFuse Triplanar Bunion Correction System does not have product specific contraindications.

General surgical contraindications include:

- Infection
- Physiological or psychological inadequate patient
- Inadequate skin, bone, or neurovascular status
- Irreparable tendon system
- Possibility for conservative treatment
- Growing patients with open epiphyses
- Patients with high levels of activity

Operative technique

Patient positioning

Place the patient in a supine position with a small bump under the ipsilateral hip to place the foot in a neutral position.

First tarsometatarsal joint exposure

Create a dorsomedial incision over the first tarsometatarsal (TMT) joint, medial to the extensor hallucis tendon (EHL). The incision should extend approximately 20mm – 25mm on either side of the TMT joint. Take care to identify and protect the overlaying neurovascular structures. Release the EHL of the first TMT joint and retract laterally.

Perform a capsulotomy of the first TMT joint. Take care to ensure complete exposure of the plantar and lateral aspects of the joint. The joint is approximately 30mm deep.

Figure 1

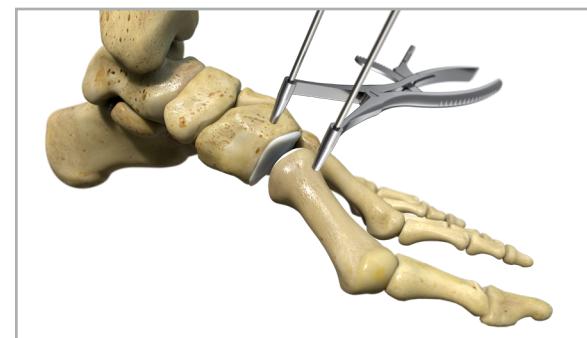
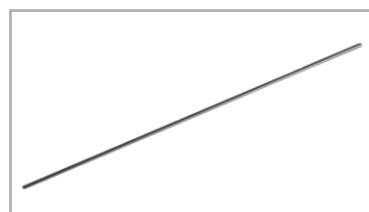


Figure 2


First tarsometatarsal joint distraction and preparation

Insert a 2.5mm threaded Steinmann pin (58862515) dorsal medial into the medial cuneiform, approximately 8mm proximal to the joint. (Figure 1) Use the LapiFuse Distractor (38140002) as a guide to place a second, parallel 2.5mm threaded Steinmann pin into the base of the first metatarsal.

Distract the first TMT joint between 10mm-15mm. (Figure 2)

Tips and tricks:

When using distractor, place body of instrument laterally over the foot.

58862515

2.5mm Steinmann pins

38140002

LapiFuse Distractor

Hand prepare the joint and remove the cartilage using the joint preparation kit (9914PK01). The osteotome is intended to scrape the cartilage with limited to no removal of the subchondral bone. The straight curette may be required to reach the edges and plantar surfaces of the joint. (Figure 3) Alternatively, use the joint preparation guide.

Figure 3

Fenestrate the proximal and distal surfaces of the subchondral bone approximately 6mm by utilizing a combination of the 2.5mm drill and drill guide from the joint preparation kit. (Figure 4) Lavage the region, reduce the joint, and protect while preparing the first metatarsophalangeal joint.

Figure 4

9914PK01
Joint preparation kit

58850025
2.5mm Drill

First metatarsophalangeal and interspace exposure

Create a medial incision over the first metatarsophalangeal (MTP) joint. Start the incision proximal to the interphalangeal and complete it 15mm-25mm proximal of the metatarsal head. Minimal capsular dissection is performed.

Insert a 1.4mm Kirshner wire (CSS-040-14) true medial into the center of the metatarsal head and perpendicular to the metatarsal shaft. The location of the k-wire is approximately 6mm-8mm proximal of the MTP joint. (Figure 5)

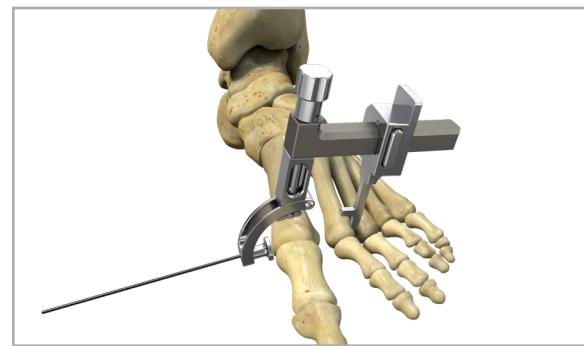
Figure 5

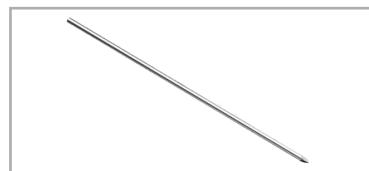
Tips and Tricks:

- Wire should be bi-cortical while minimizing lateral protrusion.
- Keep wire parallel to sesamoids.

Perform an incision in the first interspace, between the first and second metatarsals. If required, laterally release the soft tissue and ligaments. Medially stress the toe to stretch the lateral capsule and ligaments.

If lateral ligament release is not required, make incision over second metatarsal or second interspace, instead of the first interspace.




Figure 6

Intermetatarsal (IM) angle reduction

Use the LapiFuse Clamp (38140001) for multi-planar correction.

Insert the hook of the LapiFuse Clamp through the incision in the first interspace and capture the lateral head of the second metatarsal.

Insert the base of the LapiFuse Clamp on to the 1.4mm k-wire and seat flush with the head of the first metatarsal. (Figure 6)

CSS-040-14
1.4mm Kirshner wire

38140001
LapiFuse Clamp

Assemble the base and hook of the LapiFuse Clamp and reduce to the desired IM angle by compressing the ratcheting clamp. (Figure 7) Assembly of the LapiFuse Clamp should passively de-rotate the first metatarsal head. (Figure 8) If the correct position of the sesamoids is not achieved via passive de-rotation, actively de-rotate the first metatarsal to the correct position by rotating the 1.4mm k-wire in the guide.

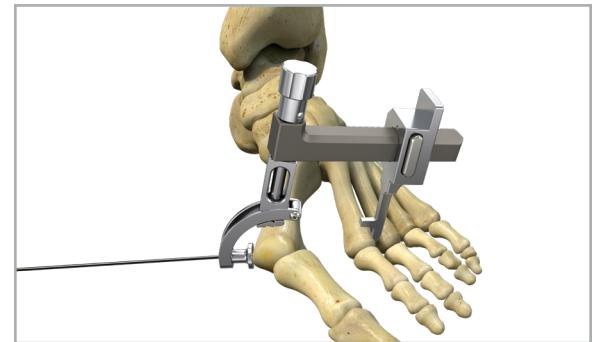


Figure 7

Note 1:

If the base and hook of the LapiFuse Clamp are not aligning, loosen the knob on the LapiFuse Clamp base to allow the ratcheting arm to swivel.

Note 2:

If frontal plane rotation of the first metatarsal is difficult, actively de-rotate the first metatarsal prior reducing the IM angle.

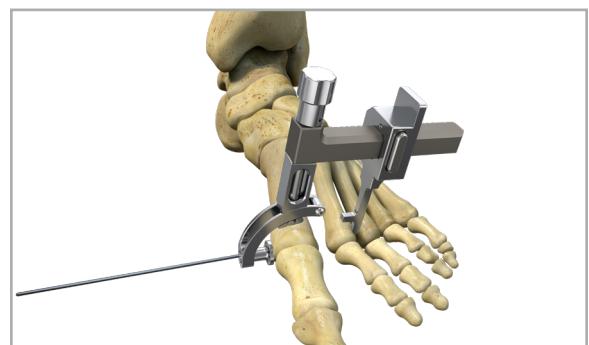


Figure 8

Interfragmentary screw placement

Use the targeting guide (38140003) to place an interfragmentary screw from the base of the first metatarsal, through the medial cuneiform, and into the body of the intermediate cuneiform. (Figure 9)

Assemble the targeting guide and insert two self-retaining 1.4mm k-wires. (58820006).

Place the drill guide at the apex of the plantar prominence on the metatarsal base at or below mid-line of first metatarsal. Under fluoroscopy, align the drill guide such that the nose of the guide is centered between the two 1.4mm k-wires. (Figure 10)

Target the trajectory of the drill guide from the plantar medial entry on the metatarsal to the dorsal lateral proximal destination in the middle of the intermediate cuneiform. While manually ensuring axial compression across the first TMT joint, place a 1.4mm k-wire (58820006) through the targeting guide to temporarily secure the joints. Additional k-wires can be used for stabilization outside the targeting guide.

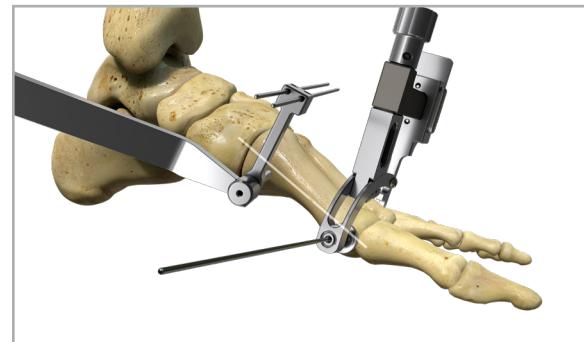


Figure 9

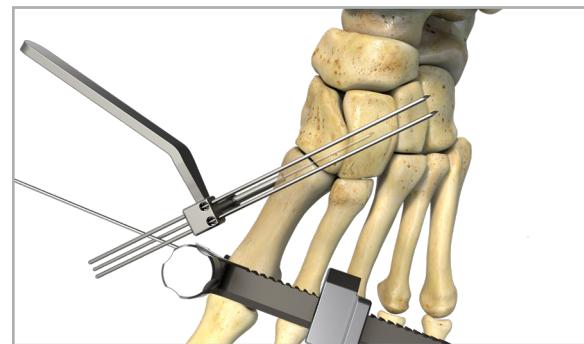


Figure 10

38140003
Targeting guide

38140003
Targeting guide:
alignment tower

Remove the targeting guide from the k-wire and replace with the lag screw depth gauge (38140004) to determine the length of the interfragmentary screw.

Use the 2.7mm drill (CSS-071-27) and drill guide (CSS-071-277) to prepare a pilot hole across the joints. If required, use the counter-sink (MSD-070-40) to seat the head of the screw flush with the bone. (Figure 11)

By hand, assemble the interfragmentary screw (MSD-010-40-xxxx) across the first TMT joint and into the intermediate cuneiform, utilizing the cannulated T15 driver (MSD-056-40) and ratcheting driver (58881T15). Optionally, use the dome washer (3814006) with the interfragmentary screw for improved stress distribution across the bone. (Figure 12)

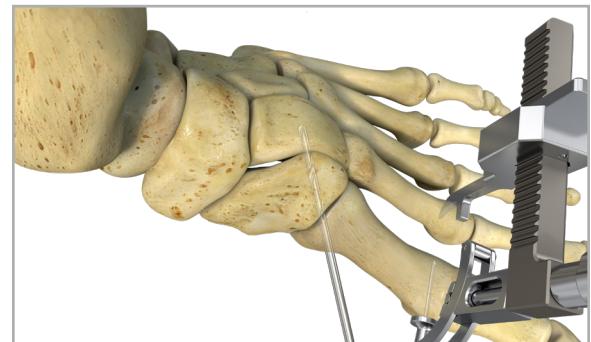


Figure 11

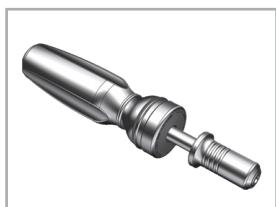
Figure 12

Note:

Dome washer laser etch should be facing the bone.

38140004
Depth gauge

CSS-071-27
2.7mm Drill


CSS-071-277
Drill guide

MSD-010-40-xxxx
Interfragmentary screw

MSD-056-40
Hexstar driver

58881T15
Ratcheting driver

3814006
Dome washer

MSD-070-40
Countersink

Remove the targeting guide from the k-wire and replace with the lag screw depth gauge (38140004) to determine the length of the interfragmentary screw.

Use the 2.7mm drill (CSS-071-27) and drill guide (CSS-071-277) to prepare a pilot hole across the joints. If required, use the counter-sink (MSD-070-40) to seat the head of the screw flush with the bone.

By hand, assemble the interfragmentary screw (MSD-010-40-xxxx) across the first TMT joint and into the intermediate cuneiform utilizing the cannulated T15 driver (MSD-056-40) and ratcheting driver (58881T15). Optionally, use the dome washer (3814006) with the interfragmentary screw for improved stress distribution across the bone. (Figure 13)

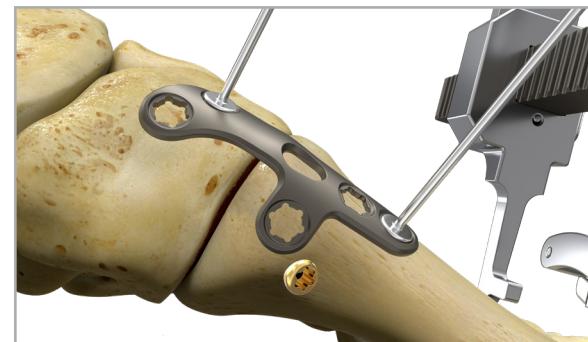


Figure 13

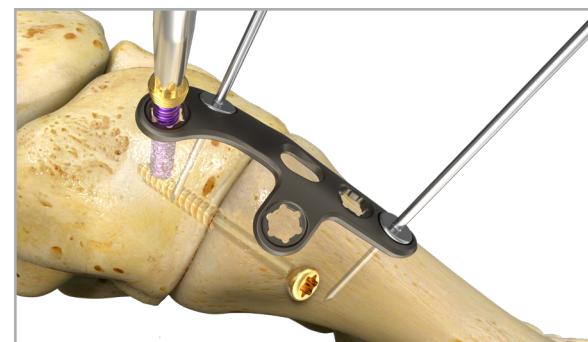


Figure 14

Note:

Threaded bending iron (5887003) is available to contour the plate to the bone. Thread the bending iron into the plate completely prior to bending. Do not bend the plates without the bending iron.

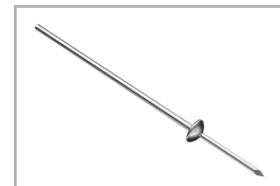
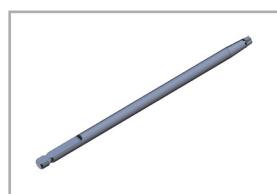


Caution:

Plate bending should only occur in one direction. Reverse or repeated bending will weaken the plate or cause it to break.

Proximally fix the plate to the bone with locking (588035xx) and/or non-locking (588133xx) screws using a T15 driver (58861T15), after preparing the pilot hole using either the on-axis (58872560) or conical (58872028) drill guide and the 2.5mm drill (58850025). (Figure 14) The on-axis drill guide must completely thread onto the plate, whereas the conical drill must mate with the hexalobular feature in the locking hole. Use the plate screw depth gauge (5362000160) to determine the appropriate screw length.

Caution:

Locking screws can be unlocked, redirected, and relocked in various orientations a maximum of only 3 times.

58820006
Fixation pin5887003
Threaded bending iron588035xx
Locking screw58861T15
t15 driver58872560
2.8mm threaded
drill guide58872028
2.0/2.8 poly axial
drill guide588133xx
Non-locking screw58850025
2.5mm drill

If additional compression across the TMT joint is required, utilize the compression slot. Drill a 2.5mm hole at the furthest distal point on the compression slot, measure the screw length, and drive a non-locking screw into the bone until fully seated into the plate. (Figure 15)

Note:

Compression across the joint is created as the screw travels proximally down the compression slot.

Caution:

Bi-cortical fixation is required for the screw in the compression slot.

Distally fix the plate to the bone with locking and/or non-locking screws in a similar manner as described above for proximal fixation.

Note:

Retightening the 4mm interfragmenting screw after implementation of the non-locking screw through the compression slot may be required.

First – second metatarsal fixation

If additional stability in the forefoot is required, the surgeon has the option for transverse fixation across the first – second metatarsal. (Figure 16) If using the 6-hole plate, transverse fixation can be achieved by manually placing either a locking or non-locking screw through the out-of-plane locking hole.

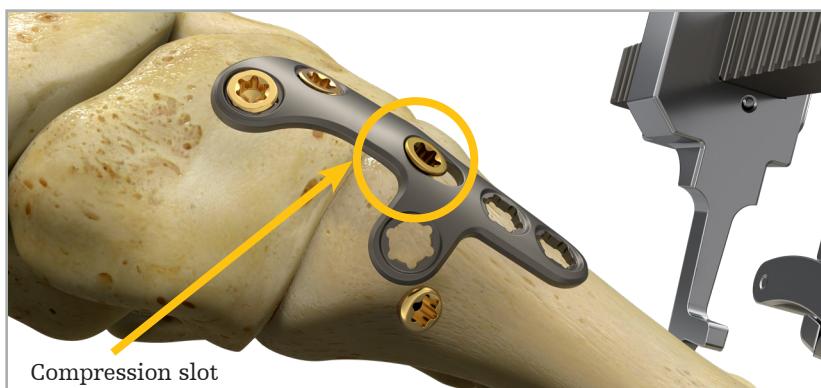


Figure 15

Figure 16

Explant information

Removal of the plate may be performed by first extracting the plate screws using the Star 15 straight drivers (58861T15), not included in the kit, and then removing the plate from the bone.

If the removal of the implant due to revision or failure of the device, the surgeon should contact the manufacturer to receive instructions for returning the explanted device to the manufacturer for investigation.

58861T15
Star 15 straight drivers

Postoperative management

Postoperative care is the responsibility of the medical professional.

Ordering information

Non-locking screws

Part number	Description
58813512	3.5mm x 12mm
58813514	3.5mm x 14mm
58813516	3.5mm x 16mm
58813518	3.5mm x 18mm
58813520	3.5mm x 20mm
58813522	3.5mm x 22mm
58813524	3.5mm x 24mm
58813526	3.5mm x 26mm
58813528	3.5mm x 28mm
58813530	3.5mm x 30mm
58813532	3.5mm x 32mm
58813534	3.5mm x 34mm
58813536	3.5mm x 36mm
58813538	3.5mm x 38mm
58813540	3.5mm x 40mm

Plates

Part number	Description
3814000L	Standard lapidus plate left
3814000R	Standard lapidus plate right
3814100L	Trans-metatarsal lapidus plate left
3814100R	Trans- metatarsal lapidus plate right
3814002L	Standard lapidus 2mm plate left
3814002R	Standard lapidus 2mm plate right
3814102L	Trans-metatarsal lapidus 2mm plate left
3814102R	Trans-metatarsal lapidus 2mm plate right

Locking screws

Part number	Description
58803512	3.5mm x 12mm
58803514	3.5mm x 14mm
58803516	3.5mm x 16mm
58803518	3.5mm x 18mm
58803520	3.5mm x 20mm
58803522	3.5mm x 22mm
58803524	3.5mm x 24mm
58803526	3.5mm x 26mm
58803528	3.5mm x 28mm
58803530	3.5mm x 30mm
58803532	3.5mm x 32mm
58803534	3.5mm x 34mm
58803536	3.5mm x 36mm
58803538	3.5mm x 38mm
58803540	3.5mm x 40mm

Lag screws

Part number	Description
MSD-010-40-035L	MSD-010-40-035L
MSD-010-40-375L	MSD-010-40-375L
MSD-010-40-040L	MSD-010-40-040L
MSD-010-40-425L	MSD-010-40-425L
MSD-010-40-045L	MSD-010-40-045L

Ordering information (cont.)

Washer

Part number	Description
3814006	Dome washer

Instruments

Part number	Description
38140001	LapiFuse Clamp
38140002	LapiFuse Distractor
38140003	LapiFuse Targeting Guide
58870003	Threaded bending iron
58871010	Ratcheting driver handle
38140004	Lag screw depth gauge
5362000160	Plate Screw depth gauge
58820006	Temporary fixation pin 1.1mm
58862515	Threaded k-wire 2.5mm
58850025	Drill bit 2.5mm
58872560	Threaded drill guide 2.8mm
58872028	2.0/2.8 Poly axial drill guide
58881T15	Star 15 self-retaining driver
CSS-040-14	Guide wire 1.4mm
CSS-071-27	Straight drill guide 2.7mm
CSS-072-27	Drill Bit 2.7mm
MSD-070-40	Countersink 4mm
MSD-056-40	Hexstar driver 4mm

Joint prep instruments

Part number	Description
9914pk01	Lapifuse Joint Preparation Instruments
9914pk02	Lapifuse Joint Preparation Guide

Foot & Ankle

This document is intended solely for the use of healthcare professionals. A surgeon must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. Stryker does not dispense medical advice and recommends that surgeons be trained in the use of any particular product before using it in surgery.

The information presented is intended to demonstrate a Stryker product. A surgeon must always refer to the package insert, product label and/or instructions for use, including the instructions for cleaning and sterilization (if applicable), before using any Stryker product. Products may not be available in all markets because product availability is subject to the regulatory and/or medical practices in individual markets. Please contact your Stryker representative if you have questions about the availability of Stryker products in your area.

The instructions for use, operative techniques, cleaning instructions, patient information leaflets and other associated labeling may be requested online at ifu.stryker.com or stryker.com. If saving the instructions for use, operative techniques, cleaning instructions from the above mentioned websites, please make sure you always have the most up to date version prior to use.

Stryker Corporation or its divisions or other corporate affiliated entities own, use or have applied for the following trademarks or service marks: LapiFuse, Ortholoc, Stryker, Wright Medical. All other trademarks are trademarks of their respective owners or holders.

