Evolution in ECG Interpretation

					l
					l
		4	(l
-	2	H_		L	┝

University of Glasgow ECG analysis program LIFEPAK[®] 15 monitor/defibrillator

Key definitions

STEMI (ST elevation myocardial ischemia/infarction)

STJ level (ST level at J point, QRS end)

STEMI imposter (non-ischemic cause of ST elevation)

Sensitivity for STEMI (% of STEMI patients who get a STEMI interpretation)

Specificity for STEMI (% of patients without STEMI who do not get a STEMI interpretation)

False positive rate (% of patients without STEMI who get a STEMI interpretation, = 100% - specificity)

Positive predictive value (% of STEMI interpretations that are actually STEMI; this is strongly affected by STEMI prevalence in the population who get 12-leads

12-lead ECG interpretive programs are not created equal

The Glasgow ECG analysis program has been used around the world and refined over 30 years.¹ It is considered to be among best-in-class by cardiologists.² The LIFEPAK 15 monitor/defibrillator currently uses Glasgow version 27.^{3,4} As a trusted ECG interpretive algorithm, the Glasgow program offers many leading clinical advantages and has proven performance for STEMI analysis.³⁻⁸

Published performance

Published performance in hospital and prehospital environments should be a standard expectation of any 12-lead ECG interpretation program. The Glasgow ECG analysis program has been well-studied in both clinical settings.

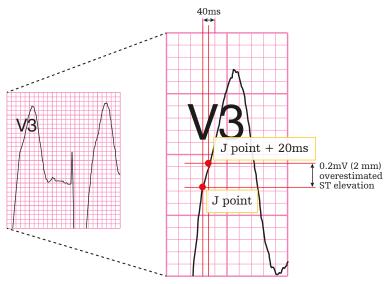
- Four published articles on STEMI detection in prehospital use
- Over 100 published articles on detection of arrhythmias and morphology abnormalities

Prehospital studies using the Glasgow ECG analysis program	n	Sensitivity for STEMI	Specificity for STEMI	False positive rate for STEMI
Tuscon data (Macfarlane 2004) ⁵	1,220 patients with chest pain	N/A	98.5%	1.5%
Tuscon data (Macfarlane 2007) ⁶	300 patients with chest pain	89%	N/A	N/A
Denmark data (Clark 2010) ⁷	912 patients with ACS symptoms	78%	94%	6%
Los Angeles data (Bosson 2017) ⁸	44,611 patients with 12-lead ECGs	92.8%	98.7%	1.3%

Note: Sensitivity and specificity for STEMI should not be compared between different ECG interpretive programs unless testing was done with the same 12-lead ECG data set.

Clinical advantages

The Glasgow ECG analysis program incorporates key clinical features to assist clinicians with diagnostic assessment of patients with challenging 12-leads.


- STEMI thresholds based on age and gender as recommended by the AHA/ACCF/ESC⁹⁻¹¹
- Measures ST level at the J point for STEMI as recommended by the AHA/ACCF/ESC¹⁰⁻¹¹
- Uses Sgarbossa criteria for STEMI detection in LBBB as recommended by the AHA/ACCF/ESC¹⁰⁻¹²
- Provides interpretive analysis statements for adult and pediatric patients¹³
- Includes criteria for Brugada pattern, a non-ischemic cause of ST elevation

Age and gender based STEMI thresholds

- Age and gender affect normal STJ levels
- Older men require less STJ elevation than younger men for STEMI
- Women require less STJ elevation than men for STEMI
- The AHA-recommended STEMI thresholds are based on age and gender data from University of Glasgow research^{9,10}

J point measurement for STEMI threshold

- The Glasgow program follows the AHA/ACCF/HRS recommendations for STJ measurement at the J point for STEMI 10,11
- Measuring after the J point can result in overestimation of the true J point measurement for STEMI

Sgarbossa criteria for STEMI analysis in left bundle branch block (LBBB)

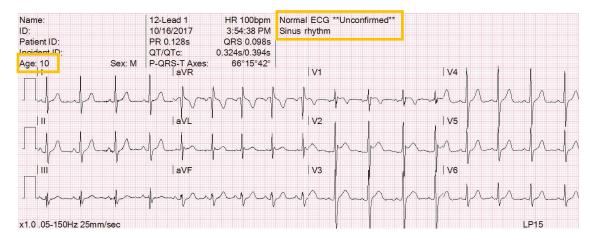
- LBBB can increase the risk of a false negative STEMI interpretation
- LBBB is also a "STEMI imposter" and increases the risk of false positive STEMI interpretation
- The Glasgow program uses Sgarbossa criteria to look for STEMI when the patient has a $\rm LBBB^{4,12}$

12-lead ECG interpretive program comparison

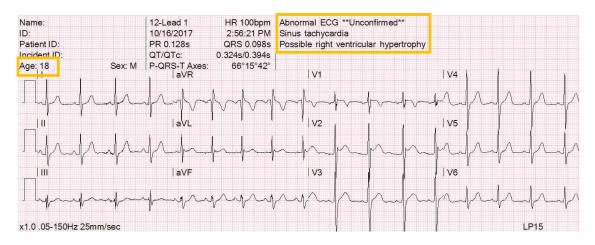
Adult and pediatric interpretive analysis

- Infrequent use of pediatric 12-leads makes pediatric interpretive analysis clinically valuable
- The Glasgow program can be used for patients of any age down to newborns $^{\rm l3}$
- ECG criteria for neonates, infants and children
 - Age-dependent bradycardia and tachycardia limits
 - Age-dependent conduction defect limits
 - Age-dependent right ventricular hypertrophy
 - Age-dependent ST depression thresholds

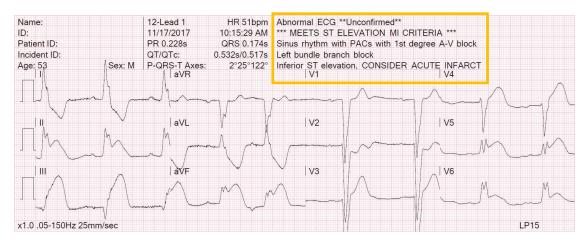
Brugada statement


- Brugada syndrome is an inherited genetic defect that increases risk for spontaneous VT/VF
- It occurs in approximately 1 in 2,000 patients
- A distinct coved-type ST elevation occurs in the right precordial leads
- It is also a "STEMI imposter" and increases the risk of false positive STEMI interpretation
- The Glasgow program uses Brugada pattern criteria according to the **Second Consensus Conference on the Brugada Syndrome**^{4,14}

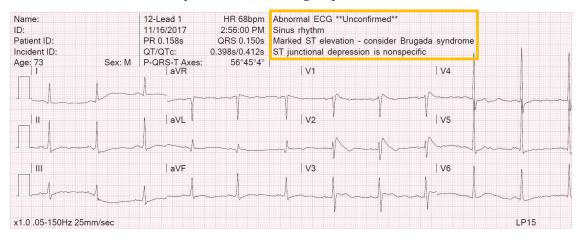
	LIFEPAK 15 monitor/defibrillator	ZOLL X Series® monitor/defibrillator	Philips [®] MRx monitor/defibrillator
12-lead ECG interpretive algorithm	Glasgow v27.0	Inovise 12L v1.00	DXL vPH100B
Pediatric interpretation	Yes	No	Yes
LBBB criteria for STEMI	Yes	No	Yes
ST measurement taken at the J point	Yes	No	Yes
Published results from testing with prehospital ECGs	4 studies	l study	No


Pediatric interpretation for a 10-year-old patient

• The Glasgow ECG analysis program gives an appropriate pediatric interpretation


Adult interpretation for the same 10-year-old patient

- Same 10-year old pediatric patient, but taken after entering an adult age of 18 years
- Interpreting a pediatric 12-lead using criteria for adults can produce inappropriate interpretative statements
- At least one ECG analysis program is contraindicated for pediatric interpretation^{15,16}


12-lead with interpretative statement for STEMI with LBBB

• Glasgow ECG analysis program uses Sgarbossa criteria for STEMI detection in a patient with a LBBB

12-lead with Brugada interpretative statement

• The ST elevation is correctly attributed to the Brugada pattern

References

- 1. Macfarlane P, Devine B, Clark E. The University of Glasgow (Uni-G) ECG analysis program. Computers in Cardiology. 2005;32:451-454.
- 2. Willems J, Abreu-Lima C, Arnaud P, et al. The diagnostic performance of computer programs for the interpretation of electrocardiograms. N Engl J Med. 1991;325:1767-73.
- 3. Glasgow 12-lead ECG Analysis Program: Statement of Validation and Accuracy. Redmond, WA: Physio-Control; 2009.
- 4. Glasgow 12-lead ECG Analysis Program: Physician's Guide. Redmond, WA: Physio-Control; 2009.
- 5. Macfarlane P, Browne D, Devine B, et al. Modification of ACC/ESC criteria for acute myocardial infarction. J Electrocardiol. 2004;37(suppl):98-103.
- 6. Macfarlane P, Hampton D, Clark E, et al. Evaluation of age and sex dependent criteria for ST elevation myocardial infarction. *Computers in Cardiology.* 2007;34:293-6.
- 7. Clark E, Sejersten M, Clemmensen P, et al. Automated electrocardiogram interpretation programs versus cardiologists' triage decision making based on teletransmitted data in patients with suspected acute coronary syndrome. *Am J Cardiol.* 2010;106:1696-702.
- 8. Bosson N, Sanko S, Stickney R, et al. Causes of prehospital misinterpretations of ST elevation myocardial infarction. Prehosp Emerg Care. 2017;21:283-290.
- 9. Macfarlane P. Age, sex, and the ST amplitude in health and disease. J Electrocardiol. 2001;34(suppl):235-41.
- 10. Wagner G, Macfarlane P, Wellens H, et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part VI: acute ischemia/infarction. Circulation. 2009;119;e262-70.
- 11. Thygesen K, Alpert J, Jaffe A, et al. Joint ESC/ACCF/AHA/WHF Task Force. Third universal definition of myocardial infarction. Circulation. 2012;126:2020-35.
- 12. Sgarbossa E, Pinsky S, Barbagelata A, et al. Electrocardiographic diagnosis of evolving acute myocardial infarction in the presence of left bundle branch block. N Engl J Med. 1996;334:481-7.
- 13. Macfarlane P, Coleman E, Devine B, et al. A new 12-lead pediatric ECG interpretation program. J Electrocardiol. 1990;23(suppl):76-81.
- 14. Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the second consensus conference. Circulation. 2005;111;659-70.
- 15. Inovise 12L Interpretive Algorithm Physician's Guide. (9650-001357-01 Rev. C). Chelmsford, MA: ZOLL Medical Corp; 2015.
- 16. X Series® Operator's Guide, 9650-002355-01-50 Rev 9, 2017. Chelmsford, MA: ZOLL Medical Corp.

All claims valid as of June 2018.

Physio-Control is now part of Stryker.

For further information, please contact Physio-Control at 800.442.1142 (U.S.), 800.668.8323 (Canada) or visit our website at www.physio-control.com

Physio-Control Headquarters 11811 Willows Road NE Redmond, WA 98052 www.physio-control.com

Customer Support P. O. Box 97006 Redmond, WA 98073 Toll free 800 442 1142 Fax 800 426 8049 Physio-Control Canada Physio-Control Canada Sales, Ltd 45 Innovation Drive Hamilton, ON L9H 7L8 Canada Toll free 800 668 8323 Fax 877 247 7925